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Abstract. Peer-to-peer publish/subscribe architectures are an interest-
ing support for scalable distributed data stream applications. Most ap-
proaches, often based on brokers, have a static organization which is not
much adaptive to different configurations of the participants’ capacities.
We present QTor (Query Torrent) a generic organization that enables
dynamic adaptation providing a continuum from centralized to fully de-
centralized solutions. Based on query rewriting and equivalence, QTor
proposes a definition of communities and their relations that decouples
the logical and physical aspects of the problem, while efficiently reducing
organizational and functional costs.

1 Introduction

Peer-to-peer publish/subscribe organizations are an essential support for scal-
able distributed data stream applications. A lot of them [5,8] rely on brokers
to benefit from efficient local processing optimizations. More recent proposi-
tions [6,12] are fully distributed, asking the users to contribute by sharing their
results, which requires to take care of their limited resources.

Among several possible overlays to organize the system, query-oriented or-
ganizations take advantage of already computed results [4,2,6]. In this field, an
approach based on query rewriting [9,1] provides the most general solution that
is both generic and language independent and that eases the decoupling of logical
and physical layers. In addition, we consider the case of popular queries which,
even if their expressions differ, are equivalent, which means they give the same
results when executed on the same dataset.

We present QTor, an organization driven by the queries in which participants
are grouped into communities, regarding query equivalence relation. Those com-
munities are independent from each other and autonomous for their local organi-
zation. Connections between communities come from query rewritings combined
with multiple criteria (computing and networking costs, latency. . . ). This results
in a system with low organizational and functional costs that is adaptive to the
incoming participants’ capacities while preserving a low latency.
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In Section 2, we present some preliminaries and formally define the problem.
The main concepts of our approach and the resulting system are described in
Section 3. Section 4 discusses QTor flexibility. Experimental results of Section 5
show its good performances, and draws a comparison with two other approaches.
Finally, Section 6 presents related work while Section 7 concludes and exposes
some perspectives.

2 Background and problem statement

In this section, we formally define the problem as finding a system on which,
for any submitted query, a rewriting graph can be mapped, while complying
with the participants’ limitations.

2.1 System organization based on query rewriting

A distributed system is composed of software participants which originate
some streams, submit users’ queries, and bring the system some resources (mem-
ory, storage and computational capacities).

Definition 1 (System). A system is a labelled graph 〈P, PA〉 such that:
– P is a set of participants. For each participant p ∈ P , p.sources is the set

of queries representing the data streams p originates and p.queries is the set
of queries it submits to the system.

– PA is a set of triples 〈pi, pj , Qi,j〉 with (pi, pj) ∈ P 2 and with Qi,j non empty
finite set of queries representing the data streams pj gets from pi.

The bottom part of Figure 1 is an example of such system.
In order to organize such a system, relations between queries have to be

studied. Two queries q1 and q2 are equivalent, noted q1 ≡ q2, if and only if
they provide the same results regardless of the sources’ data streams contents.
Rewriting query q means finding a query q′ equivalent to q but expressed over
a set of queries qi (representing data streams or queries) different from the one
used to express q. This is noted q′ = (q ←− {q1, q2, . . . , qn}), or simply q ←−
{q1, q2, . . . , qn}, when q′ is of no need.

Definition 2 (Rewriting schema). A rewriting schema of a query qr, is a
cycle free, totally connected graph 〈Q,E〉, with Q a set of queries and E a set of
arcs, characterized by qr ∈ Q with:
– ∀{q, q1, q2 . . . qn} ∈ Qn+1, if ({q1, q2 . . . qn}, q) ∈ E then

there exists a rewriting q ←− {q1, q2, . . . , qn}, and
– the in-degree of each node is at most one, and
– qr is the only node with an out-degree equal to zero.

Despite the number of possible rewritings between queries, a rewriting schema
contains at most one possible rewriting for each query and avoids cycles, as the
configuration graph used in [6]. An example of rewriting schema is illustrated
on the upper part of Figure 1.
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System: Participant p1 is the unique source participant that originates a data stream
(p1.ds34, represented by q1). Participant p2 submits queries q2, q4 and q7 to the system.
It gets q1 from p1 and q7 from p4. It computes q2 and q4. It serves q1 to p4 ; q2 to p3
and p5 ; q3 to p6 and p7 ; q4 to p4, p5 and p6 ; q5 to p4 and p7. And so on for other
participants.
Rewriting schema for q5: q2 (select * from p1.ds34) is rewritten from q1 (select
* from p1.ds34) using identity (noted rewriting ¬ on the figure) ; q3 and q4, are
rewritten using q2 with a selection and a projection (select Id, P from q2 where
x=21) ; q5 is rewritten as the intersection of q3 and q4.

Fig. 1. The system implements a rewriting schema for q5.
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Definition 3 (Well founded system). A system 〈P, PA〉 is well founded if
and only if for any query q issued by any participant p there exists a rewriting
schema 〈qr, Qr, Er〉 such that:
– qr = q (syntactic equality), and
– there is a mapping m from Qr to P such that
• m(qr) = p, and
• ∀({q1, q2 . . . qn}, qg) ∈ Er, ∀qi ∈ {q1, q2 . . . qn},

(m(qi) = m(qg)) ∨ (〈m(qi),m(qg), Qi,g〉 ∈ PA ∧ qi ∈ Qi,g), and
• ∀qi ∈ Qr, if qi is a leaf then qi ∈ m(qi).sources.

The use of rewriting schemas ensures each participant can compute the re-
sults it is interested in using the streams it gets. Furthermore, because the rewrit-
ing schema is acyclic, the system does not embed any cycle. This is important
to avoid loops, which make participants waiting for each others’ results.

2.2 Problem statement

To further define the problem it is necessary to pay attention to real world
constraints. Physical constraints: the participants have limited computational
and network capacities. Overload of each capacity has to be avoided. Moreover,
the solution should consume as few resources as possible considering not only
its functional cost, but also organizational costs (setting up and maintenance
costs). Social constraints: the solution has to comply with each participant’s
resource management policy that specifies to which uses the resources that it
provides are dedicated. Last but not least, in many applications, latency is of
prime importance for users’ welfare.

The problem is to find a well founded system, which is i) consistent with
participants capacities, ii) compliant with their resource management policies,
iii) as efficient as possible with respect to resources consumption (computing,
network, energy), and iv) providing results to participants with a latency as
small as possible.

3 QTor system

We present QTor (Query Torrent), a generic well founded system which
addresses the problem. We focus on its organization principles, which ensure
the system flexibility avoiding details of the participants’ inner management.
Our approach is based on the notion of community, which is in charge of the
computation of a set of equivalent queries and of the resulting data stream. A
graph of those communities provides the overall organization.

3.1 Graph of communities

We define a computing unit as a software component which is created by
a participant p to declare some interest in a query q, formally noted u =〈q, p〉.
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A participant creates a unit for each expressed or computed query. In addi-
tion, each unit requires sufficient network ressources to get its data streams in
and to transmit its data stream output to at least another unit.

Definition 4 (Community). A community C is a couple C = 〈q, U〉 where q
is a query and U is a set of computing units such that ∀u ∈ U , u.q ≡ q.

Notice that we do not require all units with equivalent queries to be part of
the same community, due to pragmatic reasons. Indeed, all equivalences are not
always provable in a reasonable time.

As a community C is defined by a query C.q, the semantic overlay can be
structured taking advantage of rewriting technics.

Definition 5 (Graph of Communities). A Graph of Communities is a cycle
free hyper-graph φ =〈C , RR〉, with
– C is a finite set of communities where
∀(Ci, Cj) ∈ C 2, if i 6= j then Ci ∩ Cj = ∅.

– RR is a set of hyper-arcs such that:
• if ({C1, C2 . . . , Cn}, C) ∈ RR then

there exists a rewriting C.q ←− {C1.q, C2.q, . . . , Cn.q}, and
• the in-degree of any source-community is equal to zero ; the in-degree of

any other community is equal to one.

As each community is dedicated to a query (or a set of equivalent queries),
the graph of communities describes and implements a rewriting schema.

The use of communities has three major effects. First, there are often much
less communities than units, due to the popularity of queries. This reduces the
graph size. Second, it avoids wasting time and energy to compute several times
the same rewritings for each equivalent query (and it also avoids cycles between
those equivalent queries). Third, it splits the physical organization problem into
several smaller, independent tasks, while enabling units to collaborate when they
compute complex queries which would be out of reach of a single participant.

Materializing this theoretical model into a functional system requires to an-
swer some concrete questions like: “how does a community get the data streams
it needs?” ; “how to disseminate the data stream corresponding to the result of
a query?” ; and “how to compute a query within a community?”. Without loss
of generality, we simplify this latter point by assuming that the computation is
ensured by a single unit with enough resources. Indeed, introducing distributed
computing within a community is an orthogonal problem which does not impact
the other points.

3.2 Building the whole system

Reorganizing the whole system at each insertion, without considering the
existing system, may be too expensive to implement. A periodic reorganization
as in Delta[6] is possible, but it is difficult to define this periodicity and how to
handle insertion of new participants during the period. This is why we choose
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to rely on an incremental approach. For example, when a participant expresses
a query, it searches for an existing community working on an equivalent query,
through a tracker that knows all the communities and their organization. If one is
found, the participant creates a unit which joins it. Otherwise, a new community
is created: a cost model, considering processing, network loads and latency is used
to select the best rewriting schema among those computed using the existing
communities already organized according to rewriting schemas. Then, the new
community has to be connected with the others. Notice that, contrary to a data
integration problem, in this case, it is not necessary to compute all the possible
rewritings [9].

3.3 Participants’ spreading over communities

Given a community C, associated with query q and taking its data stream
input from another community C ′, we define two mechanisms enabling a par-
ticipant to create a new unit to contribute to an additional community. Notice
that these mechanisms keep the communities disjoint and that they can be gen-
eralized to a rewriting involving several parent communities.

SPC: participant’s Spreading to a Parent Community. A participant p1 hav-
ing a unit u1 in community C creates and introduces a new unit u′

1 into com-
munity C ′ which enables p1 to obtain the data stream from C ′. From this,
assuming u1 (i.e. p1) is powerful enough, it computes the rewriting of q defined
by the rewriting schema and spreads the resulting data stream to other units of
community C.

SCC: participant’s Spreading to a Child Community. A participant p2 hav-
ing a unit u′

2 in the community C ′ creates and introduces a new unit u2 into
community C. u2 has to be powerful enough to compute the rewriting query of
q defined by the rewriting schema. Then, it spreads the resulting data stream to
other units of community C.

In both cases, the new unit participates to its community tasks as any unit
does. Depending on the situation, one solution may be better than the other. For
example, due to a high selectivity of query q, the data stream of community C
can have a lower throughput than the one of C ′. If in addition, the rewriting of
query q is easy to compute, the SCC mechanism becomes particularly interesting.

Choosing among these two mechanisms has to be done when a participant
joins the system with a query that requires to create a new community. This
choice is questioned at the departure of units concerned by one of these mecha-
nisms or at the arrival of a new unit that is more powerful than those implied
by the mechanism. This choice depends on specific situations, so this decision is
left to participants, who will decide to use one or the other mechanism. Notice
that communication between two communities is thus ensured by a same par-
ticipant, involving a unit in each of them. Hence, the stream exchange is imple-
mented without consuming ressources theoretically allocated to the community
C ′, which would create dependencies between communities. As a consequence,
each community is autonomous to organize itself.
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Fig. 2. Powerful data stream producer that accepts to compute for others.

3.4 Inner organization of a community

Due to the previous choices, each community can organize itself autonomously.
The SCC and SPC mechanisms and the assumption that a query computation
is done by a single unit define the way both data acquisition and query compu-
tation are ensured. The computing unit is the one belonging to the participant
in charge of the incoming communication mechanism.

Results dissemination within a community is formalized as a diffusion tree
with minimum latency. Under the simplifying assumption that the network is
homogeneous we search for a minimal depth spanning tree rooted by the com-
puting unit.

4 QTor flexibility

An interesting property of our proposal is its ability to adapt to different sit-
uations. We illustrate this point with two scenarios involving several subscribers
and a single source p1 that provides a data stream represented by query q1 (same
elements as in Figure 1). In our figures, a participant is represented by a specific
form (e.g. circle, star. . . ) which is also used for its units, with a smaller size.

In Figure 2, p1 is powerful enough to compute all queries and to disseminate
results. By using several times the SCC mechanism, it creates a unit in each
community leading to Figure 2(a). Thus p1 computes all queries and broadcasts
results. The other participants get their results directly from the data producer
without any effort. Figure 2(b) describes the resulting system which turns out
to be a classical publish/subscribe system.

In Figure 3, the producer can send its data stream to many units but has no
computing capability. Hopefully, some participants are powerful enough: p2 and
p6 use SPC to get data stream from p1. Participant p6 uses also SCC to create
units in community Cq5. Participant p2 already has units in Cq2 and Cq4 so using
SPC or SCC does not change anything. As shown on figure 3(b) participants p2
and p6 bear all the queries computation and most of the diffusion.
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As in Figure 1, p1 originates the data stream represented q1

Fig. 3. A data stream producer with no computation capacity, with altruist consumers.

The limitation of the number of connections provided by data sources is a
problem that dissemination systems are facing. A benefit of the SPC mechanism
is to enable participants to contribute to the diffusion of the source streams,
by creating units in the source community (as p2 and p6 do in the previous
scenario).

Based on fairly simple concepts such as graph of communities and the cre-
ation of units to provide data streams to communities, the formalism captures
systems previously considered as very different. As a consequence, our approach
is very flexible providing a continuum from centralized to fully decentralized
solutions.

5 Experiments

We perform several experimentations on a java simulator using PeerSim[7].
We focus on the efficiency and the adaptability of the QTor organization. Thus
without loss of generality, we consider participants expressing boolean queries
(using both conjunctive and disjunctive operators) over a single data source,
which publishes some randomly generated tuples. Participants capacities follow
a Poisson law around 30. We use [4] and [6] as baselines.

Semantic peer-to-peer overlays [4] (called later “SPO”) is a containment-
based approach that places participants in a common spanning tree. Query
equivalence is used to guide the organization (participants sharing equivalent
queries are linked together, as this is the best way to reduce costs), but with-
out any explicit notion of community: placements are computed considering the
whole graph of participants. The original approach does not take care of the par-
ticipants’ capacities, considering a single node can send data to all the others.
We developed an algorithm to fix this problem, and did not compare the aspects
that were mainly related to this algorithm (Figure 4 (a), Figure 5, Figure 7 (b)).
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Delta [6] is a recent proposition in which each participant is used as a view
in a rewriting system. The system organization is obtained in five steps: an
embedding graph of queries is computed, from which cycles are removed using
a generic algorithm. It is used to build a rewriting graph. An ILP solver is
then called to find a minimal cost solution under capacity constraints. Then, a
last algorithm, called LOGA, reduces the distance between participants and the
source to decrease latency (which is a non linear problem) avoiding to connect
them directly to the source. However, it may choose rewritings that need more
processing than the one chosen by the ILP solver.
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Fig. 4. Scalability of the organizations

Figure 4 (a) illustrates QTor scalability. We consider up to 15.000 participants
with popular queries following a Zipf distribution. Neither Delta nor SPO are
shown here. Indeed, this kind of setup results in huge communities grouping more
than 500 participants. Delta (especially the LOGA part) becomes very slow with
such communities and it is too long to obtain results. SPO is not relevant.

In the following, to conduct comparisons, we consider smaller systems with
up to 2.000 participants and a variable query popularity, i.e. community size.

In Figure 5 we evaluate the ability of the systems to adapt to different source
capacities. We consider two cases: One source with capacities similar to other
participants’ with 30 output connexions. Another one with 500 output connex-
ions. Figure 5 (a) shows the average depth of participants in the final system
which is related to the latency of obtaining results for participants. Delta does
not distinguish between those two situations. Indeed, participants are linked to
the source if and only if they have no other possibility. This means that Delta
may overload or under use the source. In QTor, the source is never overloaded
(other participants take extra charge using SPC mechanism) and, as the other
participants, a source can deploy units and participate to many communities (up
to its capacity limit, using SCC mechanism) which is a way to reduce latency. In
Figure 5 (b) we evaluate the stability of the organization and so the cost of the
maintenance of the system. In Delta, it is recommended to run the reorganization
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Fig. 5. System organisation

algorithm periodically. In its current form, Delta does not consider the existing
system, and it may impact almost all the system graph. So, even with a low
frequency, participants’ re-connexions are more numerous than in our solution,
and a powerful source is of no help. In QTor, the insertion of a new participant
may lead to some community reorganizations, but its impacts are circumscribed
to a part of the system graph. Furthermore, QTor takes advantage of a powerful
source to limit the organization cost.
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Fig. 6. Evaluation of functional costs

In Figure 6 we evaluate the functional costs associated to the organization
(which is independent from the participants’ fan-out limitation). (a) shows the
processing ratio (which means, the average number of analysis performed per
produced tuple), while (b) shows the disseminating ratio (the average number of
tuples delivered by a participant per number of tuples produced by the source).
SPO has good results, but their limitation to containment relations (which means
one view per rewriting) makes them loose some opportunities. Delta’s results in
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low redundancy are higher than QTor’s one for the same reasons its latency is
lower: algorithm LOGA makes the functional costs increase. In QTor, commu-
nities avoid this fact.
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Fig. 7. Limit cases for the organization

In Figure 7 we study two limit cases: i) the queries of the communities are
separate, i.e. they cannot be rewritten one for the others, and ii) all the partici-
pants are grouped into a sigle community, i.e. they all query for same results. In
the first case, QTor is the only proposition providing a mechanism that avoids
source’s overwhelming. In the second case, the QTor organization has an efficient
inner organization, while Delta’s one is not really adapted.

6 Related work

Some distributed Publish/Subscribe systems, with brokers such as Sem-
Cast [8], or deployed over all the participants in a full peer-to-peer organization
such as DPS [2], deploy complex organizations having several diffusion tree for
the different predicates or several indexing levels. DHTrie [12] uses an extended
Distributed Hashtable to register subscriptions, which, as often, highly depends
on the chosen structure (query language, data schema). This gives organizations
that are hard to adapt, while the use of rewritings allows a generic organization
that can efficiently be adapted.

Some other distributed systems, like CDNs [10] or Multicast-inspired systems
(for instance, SplitStream [3]), are based on the possibility for some participants
to obtain all the data produced by the source, and to re-send them unchanged
to the others. Such approaches lead to huge, redundant processing, as each par-
ticipant has to work by its own, but may be used to design efficient diffusion
scheme inside a QTor community.

A lot of propositions deal with local multi-query optimizations. For instance,
in NiagaraCQ [5], grouping the query by their “signatures” based on the physical
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operators allow to limit the I/O. In RoSeS [11], a local query graph is optimized
by factorization. Those kind of propositions alone do not cope with huge number
of participants, which require a network-wide organization, but may, in a QTor
system, efficiently be used to decrease the processing load of participants that
compute for several communities.

To the best of our knowledge, the closest propositions to ours are [4] and
Delta [6]. SPO [4] is a very dynamic and incremental solution, but it is lim-
ited to containment and does not address the participants’ capacity limitations.
Delta [6] is based on query rewriting but proposes a global, non incremental,
system reorganization with higher organizational and functional costs without
decisive advantage on latency. Furthermore, it is not adapted at all to popular
queries. These systems don’t take full advantage of powerful sources/participants
and may overwhelm sources which is a problem our solution avoids. Finally, the
notion of query-based community introduces an intermediate abstraction which
favors scalability in presence of popular queries.

7 Conclusion and perspectives

This paper shows that the QTor approach provides an efficient organization,
taking care of several aspects to result in a reliable system: capacity limitations
are never overwhelmed and participants having high capacity can efficiently help
the others. The use of communities enables to highly reduce redundant works in
case of popular queries, while simplifying the organization.

Those results are even more interesting considering there still are possible
improvements: in this paper, collaboration inside a community is limited to
sharing results. When the chosen rewritten query is still unreachable for a single
participant, our model enables distributed processing, shared by participants
having similar interests. Moreover, it may be possible to create communities
that do not correspond to any expressed queries, but enable to share common
works for several existing queries, as in the way locally used in RoSeS[11].

Decoupling logical and physical aspects allows to efficiently take care of both
of them, without concurrent objectives, in a flexible, reliable organization. Some
aspects still have to be considered, but the already obtained effects allow to
consider that the QTor approach promises interesting surroundings.
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4. Raphaël Chand and Pascal Felber. Semantic peer-to-peer overlays for pub-
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