Experimenting with Distributed Generation of RSA Keys

Thierrry Congos, François Lesueur firstname.lastname@supelec.fr

SUPÉLEC, SSIR Group (EA 4039), France

STM, September 24 2009 Saint-Malo, France

Context •000 Main Line

Background

Evaluation on Current Hardware

Conclusion

Security in MANET/P2P Networks

Specificities of MANET/P2P Networks

Dynamic and Collaborative networks without Central Authority

Approach

- Cooperative admission control to the network
- Security protocols tolerating a bounded number of attackers

Context

Background

Evaluation on Current Hardware

Conclusion

Main Line

Certification to Enforce Security Properties

Traditional View

- Security is enforced by a central point
- Capacities are proved by certificates
- \Rightarrow Certification Authorities, centralization

Our Context: Distributed Certification

- Capacities are still proved by certificates
- These certificates are signed collaboratively by members
- \Rightarrow Threshold Cryptography, no center

Context 0000 Main Line Background

Evaluation on Current Hardware

Conclusion

Usages of Distributed Certification

Availability of the CA

- Once initialized, no more central point
- Certification available if:
 - Partition of the network
 - Loss of connectivity

No central point of trust

- Certificates materialize agreement of some peers
- No single entity can forge certificates
- \Rightarrow Key must be distributedly generated !

Context 000●	Background 00000	Evaluation on Current Hardware	Conclusion 00
Main Line			
Outline			

2 Evaluation on Current Hardware

3 Conclusion

С	on	te	

Evaluation on Current Hardware

Conclusion 00

Background

Thierry Congos, François Lesueur Experimenting with Distributed Generation of RSA Ke 6/24

Context 0000	Background ●0000	Evaluation on Current Hardware	Conclusion 00
RSA Keys			
RSA Kev	Generation		

- Generate p and q l-bit primes
- Compute $N = p \times q$
- Compute the totient $\varphi(N)$
- Choose *e* such as $1 < e < \varphi(N)$ and *e* coprime with $\varphi(N)$
- Determine d such as $d \times e \equiv 1 \mod \varphi(N)$

Public key is (e, N)Private key is (d, N) Context 0000 RSA Kevs Background

Evaluation on Current Hardware

Conclusion

Distributed RSA Key Generation

- k parties generate the key
- At the end of the computation, each party *i* knows:
 - ${\scriptstyle \bullet}\,$ the modulus N
 - the public exponent e
 - a private share d_i

•
$$d = \sum_{i=1}^k d_i$$

• d, p and q are not known by anyone

Context 0000 Background 00●00 Evaluation on Current Hardware

Conclusion

RSA Keys

Distributed RSA Key Generation Algorithm (Boneh and Franklin) $1/2\,$

1. Generate p and q

• Each party generates p_i and q_i

•
$$p = \sum_{i=1}^{k} p_i$$
 and $q = \sum_{i=1}^{k} q_i$

• p and q are not explicitly computed

2. Compute N

- BGW protocol computes $N = p \times q$ from p_i and q_i
- p and q are not revealed

Context

Background 000●0 Evaluation on Current Hardware

Conclusion

RSA Keys

Distributed RSA Key Generation Algorithm (Boneh and Franklin) $2/2\,$

3. Test N for bi-primality

- N is tested for bi-primality by each party
- If N is not a product of two primes, start again...

4. Generate shares

• Each party obtains a share d_i

•
$$d = \sum_{i=1}^k d_i$$

Context
0000

Evaluation on Current Hardware

Conclusion 00

Evaluations

Previous Evaluations

Malkin, Wu and Boneh [SNDSS 99]

- 333Mhz Pentium II
- LAN/WAN
- 5 entities on LAN, 3 on WAN

Wright and Spalding [SODA 99]

- 3 servers on the same machine
- Impacts of parameters

And now ?

What can we do with current hardware ?

Context 0000 Background 00000 Evaluation on Current Hardware

Conclusion 00

Evaluation on Current Hardware

Context 0000	Background 00000	Evaluation on Current Hardware	Conclusion 00
Implementation			
Our impl	ementation		

- Unable to obtain Malkin et al.'s implementation
- C implementation
- Uses OpenSSL libraries for computations and communications
- Generalization of distributed sieving
- Parallelization to absorb latency
- Failure tolerance to nodes dying

Context
0000

Evaluation on Current Hardware $0 \bullet 0 0 0 0 0 0 0$

Implementation

Parallelization

Without parallelization

- Each peer generates p_i and q_i
- Several synchronized rounds to obtain N
- \Rightarrow Time is spent waiting for others' values

With parallelization

- Each peer generates several p_i and q_i
- Several synchronized rounds to obtain several N
- \Rightarrow Average waiting time is divided by the number of threads

Context 0000	Background 00000	Evaluation on Current Hardware	Conclusion 00
Implementation			
Failure T	olerance		

In a real setup, nodes die...

- Nodes disconnect
- Nodes crash

 \Rightarrow Each bi-primality test is an independent round, program should continue

Failure tolerance

- When a node stops responding, all other return to step 1
- Every peer wait for other peers to restart

Context	
0000	

Evaluation on Current Hardware

Conclusion 00

Implementation

Deployment on PlanetLab

We deployed this program on PlanetLab :

- Worldwide P2P testbed
- 1,000 computers
- High usage
- Nodes die unexpectedly
- \Rightarrow Pessimistic setup with high latency, low bandwidth and overloaded CPU

	Back

Results

Evaluation on Current Hardware

Conclusion 00

Number of iterations to find N

round

Number of iterations to find 1024 bit N product of two primes

Context 0000	Background 00000	Evaluation on Current Hardware	Conclusion 00
Results			
3 servers	on LAN		

Modulus size	# iterations	Data sent	Total time
1024 bits	1099	3.1 MB	25s
2048 bits	4213	22.2 MB	3 min 43s
4096 bits	16227	166.5 MB	56 min 6s

Performance in function of the modulus size, using 3 servers on a LAN

Context
Results

Evaluation on Current Hardware

Conclusion 00

Comparison LAN/WAN

Network	Time per iteration	Total time
LAN	0.07s	1 min 18 sec
PlanetLab	2.27s	50 min

Performances in function of the network (10 servers, 30 threads, 1024 bit modulus)

Context 0000 Results Background 00000 Evaluation on Current Hardware

Conclusion 00

Impact of parallelization

# threads	Time per iteration	Total time
11	0.44 s	8 min 3s
50	0.20 s	3 min 40s
100	0.15 s	2 min 45s
f multi throad	ling with 2 convors or	Dlanatlah

Effect of multi-threading with 3 servers on PlanetLab, 1024 bit modulus

С		nt		
\cap	0	0	0	

Evaluation on Current Hardware

Conclusion

Results

Experiments on WAN

# servers	# threads	Data sent	Time per iteration	Total time
10	30	39 MB	2.72s	50 min
21	100	181 MB	6.44s	118 min
37	300	572 MB	11.79s	215 min

Some example runs on PlanetLab with a 1024-bit modulus

Conclusion

Thierry Congos, François Lesueur Experimenting with Distributed Generation of RSA Ke 22/24

Context	Background	Evaluation on Current Hardware	Conclusion
0000	00000		••
Conclusion			

- Implementation of the Boneh and Franklin distributed RSA key generation algorithm
- Tests on a large network
- Keys can be generated by a few tens of peers
- More peers \Rightarrow less trust in each peers

GPL code available at :

www.rennes.supelec.fr/ren/perso/flesueur/sgrsa.htm

Context	Background	Evaluation on Current Hardware	Conclusion
0000	00000	00000000	00
Conclusion			

Experimenting with Distributed Generation of RSA Keys

Thierrry Congos, François Lesueur firstname.lastname@supelec.fr

SUPÉLEC, SSIR Group (EA 4039), France

STM, September 24 2009 Saint-Malo, France

