
A Distributed Certification System for
Structured P2P Networks

François Lesueur, Ludovic Mé, and Valérie Viet Triem Tong

SUPELEC, SSIR Group (EA 4039)
Avenue de la Boulaie - CS 47601 - 35576 Cesson-Sévigné cedex - France

firstname.lastname@supelec.fr

Abstract. In this paper, we present a novel distributed certification
system in which signing a certificate needs the collaboration of a fixed
ratio of the nodes, hence a varying number of nodes. This number is
dynamically adjusted to enforce the ratio in a fully distributed way, which
is mandatory for decentralized varying-size P2P networks. A certificate
allows then to link the key pair of a node to some rights granted to it.

Key words: P2P, Security, Distributed Certification

Introduction

P2P networks have been widely used for the last few years as they allow the
design of low cost and high availability systems. These large networks are based
on a fully distributed architecture, in which every user has an equivalent role.

There are two types of P2P networks: unstructured ones and structured ones.
In unstructured P2P networks (Gnutella [1]), requests are broadcasted or routed
through random walks. In structured ones (Chord [2]), requests are routed using
generated routing tables. We consider here structured P2P networks security.

Since security techniques used in traditional centralized systems rely on
trusted entities, directly using such techniques would break the P2P basics. It is
thus crucial to provide fully distributed security mechanisms for P2P networks.

In this paper, we present a novel distributed certification mechanism. This
certification mechanism fully distributes a Certification Authority: signing a cer-
tificate needs the collaboration of t% of the nodes. Then, considering such a
certificate valid is similar to trusting t% of the nodes would not collude to create
a false certificate. This mechanism relies on agreements by a static ratio of the
nodes (and hence a dynamic number of nodes) and not by a static number of
nodes as in [3]. Moreover, this adaptation is done in a fully distributed way, as
opposed to [4]. A certificate contains the public key of its owner and any rights
that may be needed by this owner (access rights, name ownership, . . .). As far
as we know, this is the first approach proposing a dynamic threshold in a large
and distributed environment.

We also briefly present three applications for this distributed certification,
mitigating the sybil attack [5], excluding misbehaving nodes and providing in-
telligible names for P2P Voice over IP rather than cryptographic key hashes.

2 François Lesueur, Ludovic Mé, and Valérie Viet Triem Tong

In Section 1, we present some related work. Then, in Section 2, we present
our distributed certification system. In Section 3, we discuss the security of our
system against attackers. In Section 4, we present experimental results. In Sec-
tion 5, we present the suggested applications. Finally, we conclude and propose
some future work.

1 Related Work

We first introduce structured P2P networks and we then present previous work
on distributed certification.

1.1 Structured P2P Networks

A

B

C

6
8

22

26

3032

45

51

60

15

38

55

Fig. 1. Simplified represen-
tation of Chord with iden-
tifiers going from 0 to
26 − 1 = 63. N, �
and F are nodes (PC) and
◦ are resources (files). Node
A, which nodeId is 15, is re-
sponsible for resources 60, 6
and 8.

Structured P2P networks provide a virtual
space called overlay. Each node (PC) is uniquely
identified by a nodeId ∈ KeyIds; in the same
way, each resource (file, . . .) is uniquely identi-
fied by a key identifier keyId, keyId ∈ KeyIds
(for a file, the key is usually its SHA1 finger-
print). Nodes and resources thus share the same
identifier space KeyIds, which is finite but sup-
posed large enough (often 2160 elements due to
the size of SHA1 fingerprints). Each node is re-
sponsible for the management of a part of the
resources and the overlay provides routing facil-
ities with a logarithmic cost for a node to access
a specific identifier.

In Chord for instance, the identifiers space
is represented as a ring going from 0 to 2160 − 1
and each node is responsible for all the resources
between it and its preceding node in the overlay.
This organization is illustrated in Figure 1.

1.2 Distributed Certification

We first present threshold cryptography which is the basis of previous work on
distributed certification as well as of our proposition. We then study previous
work on distributed certification in peer groups.

Threshold Cryptography In threshold cryptography, based on Shamir se-
cret sharing [6], the enciphering of a message can only be achieved through the
collaboration of a given number of entities. Threshold cryptography consists in
splitting a secret key and distributing the resulting shares on different entities.
We present here threshold cryptography based on [7].

A Distributed Certification System for Structured P2P Networks 3

(t, n)-threshold cryptography allows for enciphering a message with any t
shares chosen among those issued to n entities, each entity usually owning one
distinct share. t and n are predefined constants, set up at the initialization.
If nobody knows the secret key, this key is better protected from misbehaving
people. t shares are needed to encipher a message, but t − 1 shares hold no
information on the secret key. An attacker must thus obtain t shares of the
secret key to be able to recover the full key.

When some entity wants to obtain the signature of some data d, it asks t other
entities to sign d with their own share. The signature of d by the secret key is then
a combination of the t partial signatures. For instance, if the signature function f
is homomorphic, i.e., f(x+y) = f(x)×f(y) (the RSA function is homomorphic),
the combination of the partial signatures is simply their multiplication. Only the
partial signatures are public and not the key shares. Such threshold cryptography
schemes have been previously used to provide distributed certification.

Distributed Certification in Peer Groups Distributing a certification pro-
cess can be achieved through threshold cryptography. In [3], Kong et al. propose
a distributed certification based on the cooperation of t nodes, t being a fixed
number of nodes during the whole life of the system. The choice of t is a problem
since t = 3 might for instance be a correct value for a network composed of 10
nodes but is clearly too small when the same network has grown to 1000 nodes:
t should be a ratio of the number of nodes.

In [4], Saxena et al. propose to adapt the threshold t dynamically using
algorithms proposed by Frankel et al. in [8]. A server manages a counter of the
network size and detects the need for changing the threshold. Besides scaling and
robustness problems in threshold changing algorithms, the reliance on a server is
opposed to P2P bases and lowers the availability of the network. None of these
schemes is thus sufficient for distributing certification in a P2P network.

In this paper, we propose a novel distributed certification scheme. In this
scheme, the threshold is dynamically adjusted in a fully distributed way, which
is mandatory for decentralized varying-size networks such as P2P ones.

2 A Distributed Certification System

In this section, we present our distributed certification mechanism in a struc-
tured P2P network. First, we describe the principle of the proposed certification
system. Then, we present the sharing of the secret key used to distribute the
certification process. Finally, we explain the distributed certification algorithm.

2.1 Principle

The network is characterized by an RSA public/secret key pair (P, S): P is
publicly known and S is shared among the nodes (no node knows S). This key
pair is generated by founding members using a distributed algorithm as Boneh
and Franklin proposed in [9]. Certificates follow the X.509 format and contain

4 François Lesueur, Ludovic Mé, and Valérie Viet Triem Tong

in particular the public key of their owners and some rights granted to these
owners. They are signed with S through a novel threshold cryptography scheme.

Each solicited node of the P2P network decides locally if it should partici-
pate in the certification process. Such decisions are based on local observations,
security policy or proofs included in the certification request (see Section 5). Ob-
taining a valid certificate requires the agreement and cooperation of a fixed ratio
t of the members of the network. Then, trusting the validity of this certificate is
equivalent to trusting that such a ratio of node would not collude to lie.

In the following, we make the assumption that there is no successful Sybil
Attack [5] in the network, i.e., each person has only one connected node and its
identifier is truly random. We discuss in Section 5.1 a self-healing node admis-
sion control, rejecting sybil nodes using our distributed certification operated by
already accepted ones (which are thus non-sybil).

2.2 Sharing the Network Secret Key

The sharing of the network secret key is based on the homomorphic property of
the RSA enciphering function. Generally, if S = (e,m) denotes the RSA network
secret key, we can pick s shares e1, . . . , es such that e =

∑s
i=1 ei and then for

any data d:

de[m] = d
Ps

i=1 ei [m] =
(s∏

i=1

dei [m]
)
[m]

In other words, the RSA signature of d with S, which is de[m], is equal to the
product of the signatures with each share modulo m, m being publicly known
since it appears in the network public key P = (d, m).

If the security policy of the network defines that a certification has to be
controlled by a ratio t of the nodes (t ∈ [0, 1]) and if n is the size of the network,
then the secret key must be split in s = t×n shares. To provide a share to each
member, each share ei is then replicated on g = 1

t members composing a sharing
group, each member knowing the list of his group. In order to sign a certificate,
each share has to be involved and so a ratio t of the nodes must cooperate.

When the network grows (resp. shrinks), the number s of shares must grow
(resp. shrink) in order to maintain s = t × n, since t is a static ratio. However,
each share should still be replicated on g = 1

t members, which is independent
of the network size n. So, a sharing group can detect without knowing n (and
hence without a central counter) if it is too small or too large.

When nodes join (resp. leave) the network, if a sharing group detects it is
too large (resp. too small) to maintain s = t × n, i.e., this group is composed
of more (resp. less) than 1

t members, it splits and generates a new share (resp.
merges with another group and discards one share). To create two shares ei0

and ei1 from a single share ei, ei0 and ei1 must simply be chosen such that
ei0 + ei1 = ei and ei must be discarded. To prevent an attacker from keeping
ei and thus having a larger share than others, ei is rendered useless by mixing
ei0 and ei1 with two other randomly chosen shares ex and ey: a chosen random
value ∆0 (resp. ∆1) is added to ei0 (resp. ei1) and subtracted from ex (resp. ey).

A Distributed Certification System for Structured P2P Networks 5

After this operation, the sum of shares is still e but ei is not part of the sharing
anymore. Creating one share from two shares is exactly the opposite operation
of splitting. These operations only involve members of the concerned sharing
groups and not the whole network.

However, only creating two sharing groups from one (resp. one from two) does
not allow to have each group composed of exactly 1

t members. In fact, we define
two bounds gmin and gmax for merging and splitting sharing groups, which are
respectively the minimum and maximum size of a sharing group. We thus have

1
gmax

< t < 1
gmin

and we expect s to roughly equal t×n. Finally, when a sharing
group grows to gmax members, it is split in two groups of size gnew = gmax

2 .
If gnew was lower than gmin, then these two groups would both have to join
another group right after having split, so we must have gmax > 2× gmin.

e0

e10

e11

NodeId = 11*

NodeId = 10*

NodeId = 0*

e

Fig. 2. Distribution of three shares
e0,e10 and e11 with e = e0 + e10 + e11.
Each node knows the list of members of
his sharing group.

Each share is uniquely identified
by a binary shareId and is known
by nodes which identifiers are such
that nodeId = shareId∗ in binary
form (i.e., shareId is a binary prefix
of nodeId). Each node knows only
one share and nobody knows S en-
tirely. Splitting a group knowing ei

(resp. merging two groups knowing
ei0 and ei1) creates two groups know-
ing respectively ei0 and ei1 (resp.
one group knowing ei).

In Figure 2, there are three shares
e0, e10 and e11. Nodes which iden-
tifiers begin with 0 know e0, those

with 10 know e10 and those with 11 know e11. To get some data signed with S,
one must obtain and multiply this data signed with e0, e10 and e11, and thus
need the cooperation of three nodes which identifiers begin respectively with 0,
10 and 11.

2.3 Distributed Certification Process

We first present an efficient certification algorithm and we then calculate the
probability of success of this algorithm in presence of attackers.

Certification Algorithm Given the sharing illustrated in Figure 2, we now
explain the associated distributed certification process. This explanation is il-
lustrated in Figure 3, on which the node A wants to obtain a certificate for a
request Req. It has to obtain the cooperation of one node of each sharing group
to obtain the signature Reqe[m]. This certification is realized in two steps.

The first step is to deploy a covering tree on the sharing groups. The node
A requests two nodes whose binary identifiers begin respectively with 0 and 1:
A is itself eligible for 0 and finds C to handle the shareId 1. Since A owns the

6 François Lesueur, Ludovic Mé, and Valérie Viet Triem Tong

share e0, A stops here; C does not handle the share e1 (which does not exist)
so it forwards the request to two nodes B and C whose binary identifiers begin
respectively with 10 and 11. B (resp. C) owns e10 (resp. e11) so both nodes stop
here (Figure 3(a)).

The second step is to create the certificate. B and C partially sign with e10

and e11 and send their results Reqe10 [m] and Reqe11 [m] to C (Figure 3(b)). C
multiplies these two partial signatures, obtains Reqe1 [m] = Reqe10+e11 [m] and
sends it back to A. A partially signs with e0 to obtain Reqe0 [m] (Figure 3(c))
and finally multiplies the partial signatures with e0 and e1, obtaining Reqe[m]
which is the signature of Req with S = (e,m) (Figure 3(d)).

A (e0)

B (e10)

C (e11)

1

0

10

11

Req

Req

(a) A sends Req to other nodes

A (e0)

B (e10)

C (e11)

Reqe10[m]

Reqe11[m]

(b) B and C partially sign

A (e0)

B (e10)

C (e11)

Reqe10+e11[m]

Reqe0[m]

(c) C multiplies the two partial signa-
tures and A partially signs

A (e0)

B (e10)

C (e11)

Reqe0+e10+e11[m]
=

Reqe[m]

(d) A obtains the signature of Req with
S = (e, m)

Fig. 3. Certification of Req with S = (e, m). Shares do not transit.

Since the public key corresponding to each share is unknown and partial
signatures are thus unverifiable, each node involved in the certification can cor-
rupt the signature. Misbehaving nodes can produce wrong exponentiations with
owned share or wrong multiplications. We propose to ask nbAsks nodes instead
of one for a partial signature, following the hypothesis that there are less mis-

A Distributed Certification System for Structured P2P Networks 7

behaving nodes than well behaving ones. Asking several nodes, one can decide
and return the most likely partial signature.

Probability of success of the certification algorithm We calculate here
the probability of success of a legitimate certification in the case where every
honest node accepts to participate in the certification and every attacker tries to
corrupt this process. Let k ∈ [0, 1] be the rate of attackers in the network. Each
request for a partial signature is sent to nbAsks nodes, nbAsks odd, and the used
result is the value returned by more than half of the nodes (we suppose the worst
case where attackers collude to return the same incorrect partial signature).

Let us consider the tree representing the recursive calls to partially sign with
a given shareId. The leafs of this tree correspond to the shares of the secret key
which identifiers are prefixed by the given shareId. The internal nodes of this
tree correspond to the share identifiers that are not present in the network and
which provoke two recursive calls with longer identifiers, so this tree is binary.
Each node of this tree coincide with one or several P2P members (if nbAsks > 1)
asked for the corresponding shareId. We define the probability of success of a
partial signature recursively on the height of the tree representing its recursive
calls: P (h) is the probability for a partial signature to succeed in a tree of height
h (note that it includes the probability that the root node is honest).

If h = 0 (leaf), the certification succeeds if and only if this node is honest:
P (0) = 1 − k. If h > 0, the certification succeeds if and only if the root node
is honest and the two recursive calls succeed. Since the root node is eligible for
one of the calls, the probability of this node being honest and this first call
succeeding is P (h− 1). The second call is sent to nbAsks nodes and this partial
certification succeeds if the majority of calls succeed. A call succeeds with the
probability P (h − 1) and fails with 1 − P (h − 1): i calls thus succeed with the
probability Ci

nbAsksP (h−1)i(1−P (h−1))nbAsks−i. This second partial signature
succeeds when more than half of the requests succeed, yielding a probability of∑nbAsks

i= nbAsks+1
2

Ci
nbAsksP (h−1)i(1−P (h−1))nbAsks−i. Putting it all together gives

P (h) = P (h− 1)×
nbAsks∑

i= nbAsks+1
2

Ci
nbAsksP (h− 1)i(1− P (h− 1))nbAsks−i

To obtain the complete signature, the root of the tree is called on the empty
share identifier and the leafs correspond thus to the s shares of the secret key
present in the network. Since this tree is binary, its height is h = log2(s). If n is
the number of nodes and gmin (resp. gmax) is the minimal (resp. maximal) size
of a sharing group, then the average number of shares is s = 2n

gmin+gmax
. The

probability of success of the certification is thus P
(
log2

(
2n

gmin+gmax

))
. We can

conclude that the bigger the network is, the harder the certifications are. This
probability is graphed in Section 4.

3 Security Analysis

In this section, we discuss the robustness of our system against attackers.

8 François Lesueur, Ludovic Mé, and Valérie Viet Triem Tong

3.1 Obtaining a Fake Certificate

How to obtain a fake certificate ? An attacker can create a fake certificate
through obtaining the secret key of the network S. Since S is initially generated
through a distributed algorithm, no member knows S at any moment. So, the
attacker has to obtain every share to rebuild S, which means corrupting a node
or inserting himself or an accomplice in every sharing group. Due to the large
number of sharing groups (more than n

gmax
= n

40 with the values proposed in
Section 4), we think that corrupting a node in each group is quite hard. Inserting
himself in each sharing group involves creating multiple identities which is a sybil
attack (we made the assumption there is no such attack in Section 2.1). The only
other possibility is a group of attackers getting every share and we thus calculate
the probability of such a successful attack.

Probability for colluding attackers to get every share Let k be the
ratio of attackers. If a given sharing group is composed of gi members, then the
probability that there is no attacker in this group is (1 − k)gi . The probability
that there is at least one attacker in this group is thus 1− (1− k)gi .

Consider now a network composed of s sharing groups of resp. g1, . . . , gs

members (hence the number of nodes is
∑s

i=1 gi). Then the probability that there
is an attacker in each sharing group is

∏s
i=1 1− (1−k)gi . Since 1− (1−k)gi < 1,

this probability decreases when the number of shares s increases, i.e., when the
network grows. Moreover, for a given network size, reducing the size of the groups
gi and hence increasing the number of shares s results in a lower probability of
such an attack. This probability is graphed in Section 4.

3.2 Attacking an Honest Certification

How to attack an honest certification ? An attacker can prevent a cer-
tification process through intercepting the certification request. This attack is
prevented by requesting several nodes instead of one. An attacker can also try
to make a share unavailable, through crashing all the nodes in a given sharing
group or creating enough nodes or having enough accomplices to control all the
nodes in such a group. We exclude here the case of crashing gmin = 20 nodes
(value proposed in Section 4) and leave a potential countermeasure to future
work. Creating enough nodes to control a full sharing group is a sybil attack,
which is not handled here as stated in Section 2.1. The only other case is a group
of attackers controlling all the nodes in a sharing group, which is discussed below.

Probability for colluding attackers to control all the nodes in a sharing
group Let k be the ratio of attackers. If a given sharing group is composed of gi

members, then the probability that there is only attackers in this group is kgi .
The probability that there is at least one well-behaving node is thus 1− kgi .

Consider now a network composed of s sharing groups of resp. g1, . . . , gs

members. Then the probability that there is at least one well-behaving node

A Distributed Certification System for Structured P2P Networks 9

in each sharing group is
∏s

i=1 1 − kgi . The probability that there is one group
containing only attackers is thus the complementary probability 1−

∏s
i=1 1−kgi .

Since 1− kgi < 1, this probability increases when the network grows. Moreover,
for a given network size, reducing the size of the groups gi and hence increasing
the number of shares s results in a higher probability of such an attack. Given
the probability presented in 3.1, the size of the groups implies thus a trade-off
between these two possible attacks. This probability is graphed in Section 4.

4 Experimental Results

In this section, we present simulations results and compare them to theoretical
results provided in Sections 2.3 and 3. We simulated our distributed certification
system using PeerSim [10], an extensible P2P simulator. Parameters of our sim-
ulations are the number of nodes in the network, the percentage of attackers and
the number of nodes nbAsks asked for each partial signature. Sharing groups
are composed of gmin = 20 to gmax = 40 members, yielding 0.025 < t < 0.05
(certification is only possible through the collaboration of 2.5 to 5% of the nodes).

In these simulations, we do not handle attacks on nodes. For instance, a
worm attack could allow some attacker to take control of a large number of
honest nodes. However, we think that protecting against such attacks is out
of our current scope. Considered nodes are thus well-behaving or misbehaving
depending only on the local user choice.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2000 4000 6000 8000 10000

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss

Number of nodes

nbAsks = 5
nbAsks = 3
nbAsks = 1

(a) Percentage of success of the different
algorithms in function of the number of
nodes. Each experiment contains 10% of
misbehaving nodes and each node asks
1, 3 or 5 other nodes for partial signa-
tures. Corresponding theoretical curves
are also drawn.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss

Percentage of attackers

nbAsks = 5
nbAsks = 3
nbAsks = 1

(b) Percentage of success of the differ-
ent algorithms in function of the per-
centage of attackers. Each experiment
contains 5000 nodes and each node asks
1, 3 or 5 other nodes for partial signa-
tures. Corresponding theoretical curves
are also drawn.

Fig. 4. Certification results

In Figure 4(a), we vary the number of nodes in the network with a constant
percentage of attackers (10%, which is already a very large part since we do

10 François Lesueur, Ludovic Mé, and Valérie Viet Triem Tong

not consider worm attacks). As stated in Section 2.3, the larger the network
is, the harder it is to achieve a successful certification. With 500 nodes, 20%
of the certifications with nbAsks = 1 succeed. With more than 1500 nodes, no
certification with nbAsks = 1 succeeds. Even if certification with nbAsks = 5
allows to handle more attackers, it is clear that it will be important to exclude
attackers to maintain an efficient certification service.

In Figure 4(b), we vary the percentage of misbehaving nodes with a constant
total number of nodes (5000, which is a median value of Figure 4(a)). With 1% of
attackers, only 20% of certifications with nbAsks = 1 succeed. With more than
2% of attackers, this algorithm is not usable with nbAsks = 1. Certifications
with nbAsks = 3 or nbAsks = 5 are able to tolerate much more attackers.

Figure 5(a) shows the probability for colluding attackers to obtain every share
of the secret key in function of the percentage of attackers. The experimental
curve with sharing groups composed of gmin = 20 to gmax = 40 members is
bounded by the two theoretical curves where all groups are composed of 20
(resp. 40) nodes. In the worst case, 2.5% of the nodes (1

gmax
= 0.025) should

be able to obtain every share. However, obtaining every share requires not only
to have more attackers than shares but also to specifically have an attacker
in each sharing group. The theoretical probability of such an attack is in fact
infinitesimal for less than 10% of attackers (theoretical curve with g = 40).
Moreover, the experimental curve is much closer to the theoretical one with
g = 20 than to the one with g = 40. This is due to the fact that, in the
experiment, there are groups of different sizes between 20 and 40. It is then less
probable for an attacker to get into those containing only 20 members: these
small groups have a critical impact on this probability. Given that, the effective
probability of such an attack is infinitesimal for less than 20% of attackers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100Pr
ob

ab
ilit

y
of

 a
n

at
ta

ck
er

 in
 e

ac
h

gr
ou

p

Percentage of attackers

Experimental, 20 < g < 40
g = 20
g = 40

(a) Probability for colluding attackers
to obtain every share of the secret key
in function of the percentage of attack-
ers. Corresponding theoretical curves
are also drawn.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Pr
ob

ab
ilit

y
of

 a
 g

ro
up

 o
f a

tta
ck

er
s

Percentage of attackers

Experimental, 20 < g < 40
g = 20
g = 40

(b) Probability for colluding attackers
to be the only members of a shar-
ing group in function of the percentage
of attackers. Corresponding theoretical
curves are also drawn.

Fig. 5. Robustness results in a 10,000 nodes network

A Distributed Certification System for Structured P2P Networks 11

Figure 5(b) shows the probability for colluding attackers to be the only mem-
bers of a sharing group and thus to be able to make this share unavailable. The
experimental curve is also bounded by the two theoretical curves where all groups
are composed of 20 (resp. 40) nodes. It appears that the probability of such an
attack is infinitesimal for less than 60% of attackers. For the same reasons as in
the previous figure, the experimental curve is much closer to the theoretical one
with g = 20 than to the one with g = 40.

5 Applications of Distributed Certification

In this section, we briefly introduce three applications of our distributed certifica-
tion. These applications aim at preventing sybil attacks, excluding misbehaving
nodes and finally providing a secure naming service.

5.1 Sybil Protection through Admission Control to the Network

In the sybil attack [5], an attacker creates many node identifiers and possibly
picks a specific subset. With many node identifiers, an attacker can alter the
overall performance of the network. Moreover, even with a few well-chosen iden-
tifiers, an attacker can isolate nodes or censor resources. First, he can isolate a
victim node from the network and filter his requests by choosing precisely the
node identifiers the victim node uses in its routing table: this victim node then
sends all his requests to this attacker. Second, an attacker can take the control
of a resource and of all its replicas by choosing identifiers close to the attacked
resource identifier (if replication is done on nearby nodes). The problem is thus
not only to limit the number of identifiers a user can create but also to enforce
truly random identifiers.

Relying on friendship relations, SybilGuard [11] allows each node to decide
whether another node is genuine or not and so limits the number of sybil nodes
an attacker can create. However, the identifier of a node is the hash of its public
key. An attacker can thus generate many key pairs and choose a specific one
which hashes to an identifier in the desired part of the overlay: SybilGuard does
not enforce random identifiers. We propose thus to combine our distributed
certification with SybilGuard. To join the network, a new member must obtain
a certificate containing his public key signed with the network secret key and
thus needs the cooperation of a fixed ratio t of the nodes. Each of these nodes
tests the new node with SybilGuard and cooperates only if the new node is
detected as genuine: if the newcomer is detected as sybil, he does not obtain
a certificate which prevents an attacker from creating many identifiers. Then,
node identifiers are derived from the unpredictable signatures of the certificates.
Each new member thus generates a key pair, registers his public key, and finally
obtains his node identifier: a user cannot predict his identifier which ensures
random ones. Accepted members are checked as non-sybil and the network is
self-protected from sybil attacks.

12 François Lesueur, Ludovic Mé, and Valérie Viet Triem Tong

5.2 Detection and Exclusion of Misbehaving Nodes

To prevent some adversarial behaviors in the P2P network, it is interesting to de-
tect and exclude misbehaving nodes. For instance, in our certification algorithm,
nodes ask several other nodes for the same partial signature and compare the
results to cope with attackers returning fake partial signatures. Also, to obtain
a resource, nodes may use redundant routing to prevent an attacker present on
a route to this resource from forging a fake response. However, asking several
nodes for a partial signature or using redundant routing generates overhead on
the network. Excluding such attackers allows to reduce the number of nodes
asked or redundant routes used for an identical success probability.

We propose thus to detect and exclude some types of misbehaving nodes.
We make the assumption that the majority of the nodes are honest and we thus
detect attackers which exhibit a minority behavior. Each node monitors some
traffic and compares messages which should be the same. For instance, a minority
partial signature or a minority response for a given resource requested through
different routes is considered as an attack. If some traffic reveals an attack, then
the victim sends the messages proving this attack to a ratio t of the nodes and
these nodes revoke the membership certificate of the attacker with the network
secret key (revocation is a special case of certification). This attacker is then
globally excluded from the network.

5.3 Secure Naming of Resources

In [12], Bryan et al. propose to use a cheap and highly available P2P network
as a VoIP directory. Each user inserts an entry in the P2P network mapping
his name such as “John Smith” to his IP address. When a user wants to phone
John Smith, he requests the resource identified by h(”John Smith”) and obtains
the IP address of John Smith. However, they do not propose any mechanism to
prevent an attacker from intersecting such a request and replying a fake IP
address. The only solution, to our best knowledge, is to call John Smith by
a hash of his public key rather than by his name. This is not convenient to
remember.

We propose that each new user obtains a certificate binding his user name to
his public key, using distributed certification. Each node involved in this certifi-
cation first checks if there is already a user with the same name by requesting
this username in the DHT. Cache mechanisms of DHT should be able to manage
this peak of identical requests. If and only if the name is free, then this node pro-
ceeds with the distributed certification: a certificate for a given name can only
be obtained if this name is free. Then, a node wanting to phone “John Smith”
requests the resource identified by h(”John Smith”), obtains the certified public
key of John Smith and his IP address, and can then challenge John Smith about
his private key to authenticate him.

A Distributed Certification System for Structured P2P Networks 13

Conclusion and Future Work

We proposed here a distributed certification system for structured P2P networks.
This mechanism provides the ability to leverage the local knowledge of a ratio t
of the nodes to a global knowledge recognized by all the nodes in the network.
Subsequent verifications of the certificates are simple checks on digital signatures.

We evaluated and validated this distributed certification in the presence of
attackers through probabilities and simulations. We now plan on stressing a real
implementation of our system under dynamics using the PlanetLab testbed.

We finally briefly presented three applications of distributed certification in
structured P2P networks. These applications involve controlling the access of
new nodes, excluding misbehaving nodes and providing a secure naming service.
We now have to precise these applications and study interactions of the different
steps.

Acknowledgments. The authors thank Orange Labs for partially funding this
work and especially Hervé Debar for his involvement in the project and his advice
and valuable comments.

References

1. Clip2: The gnutella protocol specification v0.4. http://www9.limewire.com/

developer/gnutella protocol 0.4.pdf (2000)
2. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord: A

scalable peer-to-peer lookup service for internet applications. In: Proceedings of the
ACM SIGCOMM Conference (SIGCOMM). Computer Communication Review,
ACM Press (2001) 149–160

3. Kong, J., Zerfos, P., Luo, H., Lu, S., Zhang, L.: Providing robust and ubiquitous
security support for mobile ad hoc networks. In: Proceedings of the 9th IEEE
International Conference on Network Protocols (ICNP), IEEE Computer Society
(2001)

4. Saxena, N., Tsudik, G., Yi, J.H.: Experimenting with admission control in P2P. In:
Proceedings of the International Workshop on Advanced Developments in System
and Software Security (WADIS). (2003)

5. Douceur, J.R.: The sybil attack. In: Proceedings of the International Workshop
on Peer-to-Peer Systems (IPTPS). Volume 2429 of Lecture Notes in Computer
Science., Springer-Verlag (2002) 251–260

6. Shamir, A.: How to share a secret. Communications of the ACM 22(11) (1979)
7. Desmedt, Y.: Some recent research aspects of threshold cryptography. In: Pro-

ceedings of the 1st International Workshop on Information Security (ISW). Volume
1396 of Lecture Notes in Computer Science., Springer-Verlag (1997) 158–173

8. Frankel, Y., Gemmell, P., MacKenzie, P.D., Yung, M.: Optimal-resilience proactive
public-key cryptosystems. In: Proceedings of the 38th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), IEEE Computer Society (1997)

9. Boneh, Franklin: Efficient generation of shared RSA keys. In: Proceedings of the
17th Annual International Cryptology Conference (CRYPTO). Volume 1294 of
Lecture Notes in Computer Science., Springer-Verlag (1997)

14 François Lesueur, Ludovic Mé, and Valérie Viet Triem Tong

10. Jelasity, M., Jesi, G.P., Montresor, A., Voulgaris, S.: PeerSim P2P Simulator.
http://peersim.sourceforge.net/ (2004)

11. Yu, H., Kaminsky, M., Gibbons, P.B., Flaxman, A.: Sybilguard: Defending against
sybil attacks via social networks. In: Proceedings of the ACM SIGCOMM Confer-
ence (SIGCOMM), ACM Press (2006) 267–278

12. Bryan, D.A., Lowekamp, B.B., Jennings, C.: SOSIMPLE: A serverless, standards-
based, P2P SIP communication system. In: Proceedings of the International Work-
shop on Advanced Architectures and Algorithms for Internet Delivery and Appli-
cations (AAA-IDEA). (2005)

