Context 0000	Distributed Certification	Maintenance 000	Analysis and Results 0000	Conclusion

A Distributed Certification System for Structured P2P Networks

François Lesueur, Ludovic Mé, Valérie Viet Triem Tong firstname.lastname@supelec.fr

Supélec, SSIR Group (EA 4039)

AIMS, July 2008 Bremen, Germany

Context ●000	Distributed Certification	Maintenance 000	Analysis and Results	Conclusion 00
Main Line				
Main	Line of Our Work			

Aim

Guarantee Confidentiality, Integrity and Availability in P2P

Specificities of P2P Networks

Dynamic and Collaborative networks without Central Authority

Approach

- Admission Control to the Network
- Security Protocols tolerating a bounded number of attackers

Context	Distributed Certification	Maintenance	Analysis and Results	Conclusion
0000				
Main Line				

Enforcing Security Properties

Traditional View

- Security is enforced by a central point
- Some capacities are proved by certificates issued by CA

Our Proposition: Distributed Certification

- Some capacities are still proved by certificates
- These certificates are signed collaboratively by members
- \Rightarrow Trust that t% of the nodes would not collude

Context 00●0	Distributed Certification	Maintenance 000	Analysis and Results	Conclusion
Main Line				
Applica	ations			

Admission Control [COPS '08]

Sybil protection, only genuine members are certified

Misbehaving Nodes Exclusion [I2CS '08]

Nodes are monitored, misbehaviors are detected and excluded

Secure Naming of Resources

- Users in a P2P SIP application obtain unique and provable intelligible names (not h(P))
- P2P DNS system

Context 000●	Distributed Certification	Maintenance 000	Analysis and Results	Conclusion
Main Line				
Outline				

2 Maintenance

3 Analysis and Results

Context	Distributed Certification	Maintenance	Analysis and Results	Conclusion

Distributed Certification

Context	Distributed Certification	Maintenance	Analysis and Results	Conclusion
	000000000			
Aim				

Certification by a fixed ratio of members

Certification

Access rights, name ownership, ... materialized by a certificate:

- Contains the public key of the node
- Signed by a unique network secret key S

Certificate generation

Certificates are generated by a fixed ratio of members:

- Fair distribution of the authority
- However, network size is unknown

Context 0000	Distributed Certification	Maintenance 000	Analysis and Results	Conclusion
Related Work				
Fixed I	Number			

[Kong et al., 01]

Certificate generated by a fixed number of peers

[Desmedt, 97], [Rabin, 98]

Generic papers : sign data through the cooperation of t entities among n, t and n fixed at initialization

Mainly suits MANETs

Context	Distributed Certification	Maintenance	Analysis and Results	Conclusion
	000000000			
Related Work				

Fixed Ratio with a Server

[Saxena et al., 03]

Certificate generated by a fixed ratio of the peers, but uses a central counter of the network size.

[Frankel et al., 97]

Modification of t and n on the fly:

1
$$(t,n)
ightarrow (t,t)$$
 (Poly-to-Sum)

2
$$(t,t) \rightarrow (t',n')$$
 (Sum-to-Poly)

Possible corruption if one attacker among the tHow to know the size of the network without a central point ?

Context	Distributed Certification	Maintenance	Analysis and Results	Conclusion
	000000000			
Distributed Certification				

Our Proposition: Fixed Ratio without Server

Certification

Certificate generated by a fixed ratio of the peers, without central counter.

Adaptive threshold cryptography

Modification of t and n on the fly to maintain the ratio but without knowing the network size.

Context 0000	Distributed Certification	Maintenance 000	Analysis and Results	Conclusion
Distributed Ce	ertification			
Cryptc	ographic Material			

Principle

- Network is characterized by a key pair (S, P)
- P is publicly known
- S is shared among the nodes
- Signing a message requires the cooperation of t% of the nodes
- No node knows S at any moment

Context 0000	Distributed Certification	Maintenance 000	Analysis and Results	Conclusion 00
Distributed Ce	rtification			
RSA is	a homomorphic	function		

First level sharing

nomorphic

Let
$$S = (e, m)$$
 be the network secret key
Let e_0, e_1 be as $e = e_0 + e_1$ (arithmetic +)
Then $d^e[m] = d^{e_0+e_1}[m] = (d^{e_0} \times d^{e_1})[m]$

Example

$$(e, m) = (19, 187)$$

 $e_0 = 8, e_1 = 11$ such as $19 = 8 + 11$
 $d = 18$
Then $18^{19}[187] = (18^8 \times 18^{11})[187] = 52$

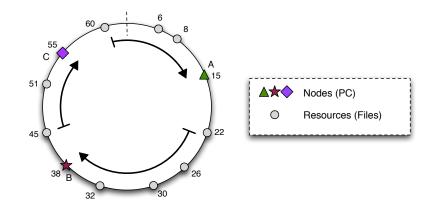
 \Rightarrow Shares e_i are distributed in *sharing groups* and this operation is recursively iterated when the network grows

Context	Distributed Certification	Maintenance	Analysis and Results	Conclusion
	0000000000			
Distributed Cert	ification			
international de la construcción de				

Fixing the Threshold Ratio

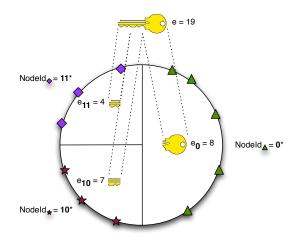
Now that we can locally split a share...

- t is the ratio of nodes needed to sign a certificate
- g_{min} (resp. g_{max}) is the minimal (resp. maximal) size of a sharing group

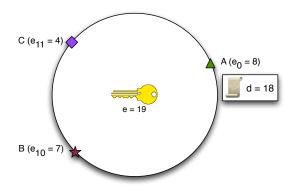

•
$$\frac{1}{g_{max}} < t < \frac{1}{g_{min}}$$

Remark

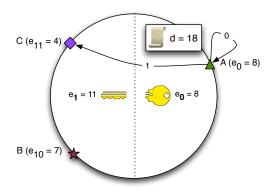
Network size is not needed to enforce t, only local knowledge !

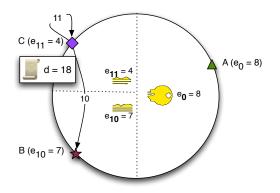

Context 0000	Distributed Certification	Maintenance 000	Analysis and Results	Conclusion
Distributed Ce	rtification			
<u> </u>				

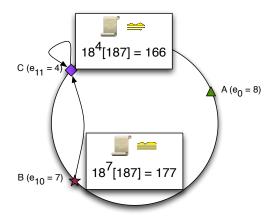
Structured P2P Networks

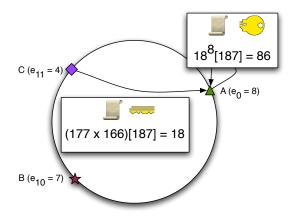


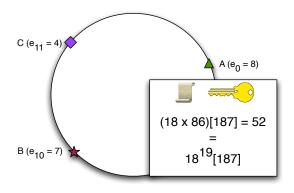
$\mathsf{DHT}: \mathit{key} \mapsto \mathit{value}$


Context 0000	Distributed Certification	Maintenance 000	Analysis and Results	Conclusion 00
Distributed Cer	tification			
Networ	k Secret Key Sha	aring		


Context 0000	Distributed Certification	Maintenance 000	Analysis and Results	Conclusion 00
Distributed Ce	ertification			
Distrik	outed Certification			


Context 0000	Distributed Certification	Maintenance 000	Analysis and Results	Conclusion 00
Distributed C	ertification			
Distrik	outed Certification			


Context 0000	Distributed Certification	Maintenance 000	Analysis and Results	Conclusion 00
Distributed Ce	ertification			
Distrik	outed Certification			


Context 0000	Distributed Certification	Maintenance 000	Analysis and Results	Conclusion 00
Distributed Co	ertification			
Distrib	outed Certification			

Context 0000	Distributed Certification	Maintenance 000	Analysis and Results	Conclusion 00
Distributed Ce	ertification			
Distrib	outed Certification			

Context 0000	Distributed Certification ○○○○○○○○●○	Maintenance 000	Analysis and Results	Conclusion 00
Distributed Co	ertification			
Distrib	outed Certification			

Context 0000	Distributed Certification	Maintenance 000	Analysis and Results	Conclusion 00
Distributed Cer	tification			

Tolerating Misbehving Nodes

Misbehaving nodes problem

A misbehaving node can:

- Fake the partial signature with his share
- Fake an intermediate multiplication
- \Rightarrow Only detected by the initiator node, with P

Solution

- Ask each partial signature to several nodes
- Exclude such nodes !

Context	Distributed Certification	Maintenance	Analysis and Results	Conclusion

Maintenance

François Lesueur, Ludovic Mé, Valérie Viet Triem Tong Distributed Certification for P2P

Context 0000	Distributed Certification	Maintenance ●○○	Analysis and Results	Conclusion 00
Maintenance (Operations			
Mainte	enance Operations	S		

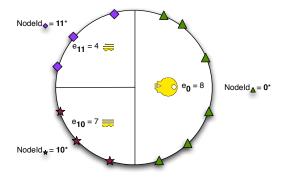
Verified invariant

- The sum of shares is the network secret key
- ② Each node knows all the members of his sharing group

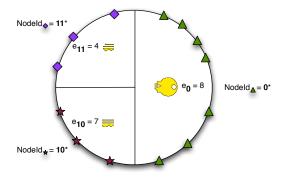
Three main operations

- Split
- Merge
- Refresh

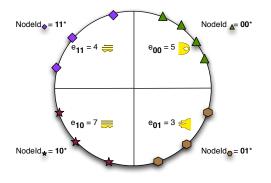
Context 0000	Distributed Certification	Maintenance ○●○	Analysis and Results	Conclusion 00
Split Operation				
Splittin	ng a share			


Principle

Splitting a share into two parts when a groups is composed of more than g_{max} members


Mechanism

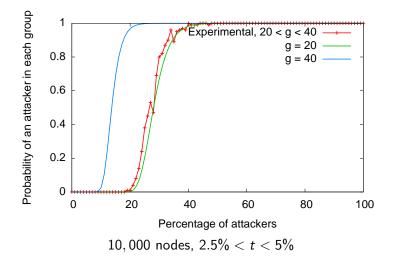
- Agreement on the value of the new shares $(e_x = e_{x0} + e_{x1})$
- 2 Each node migrates to one of the groups
- Shares are refreshed


Context 0000	Distributed Certification	Maintenance ○0●	Analysis and Results	Conclusion
Split Operation				
Splittir	ng a share			

Context 0000	Distributed Certification	Maintenance ○0●	Analysis and Results	Conclusion
Split Operation				
Splittir	ng a share			

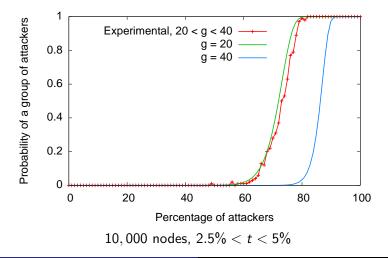
Context 0000	Distributed Certification	Maintenance ○○●	Analysis and Results	Conclusion
Split Operation	ı			
Splittin	ng a share			

Context	Distributed Certification	Maintenance	Analysis and Results	Conclusion


Analysis and Results

Context 0000	Distributed Certification	Maintenance 000	Analysis and Results	Conclusion
Obtaining a Fak	ke Certificate			
How to	obtain a fake ce	ertificate ?		

- Convince *t*% of the members
- \bullet Insert into each group \Rightarrow Sybil attack
- Collude with many other attackers


Probability for colluding attackers to obtain every share

Context 0000	Distributed Certification	Maintenance 000	Analysis and Results ○○●○	Conclusion
Attacking an Hon	est Certification			
How to	attack an hones	t certificatio	on?	

- Intercept the request
- \bullet Own each node in any sharing group \Rightarrow Sybil attack
- Collude with many other attackers

Context 0000	Distributed Certification	Maintenance 000	Analysis and Results	Conclusion ●0
Conclusion				
Distrib	uted Certification			

Provided Service

- Cryptographic proof of agreement of a fixed ratio of the nodes
- Resistant to some inside attackers

Applications

- Protecting from Sybil Attack
- Excluding attackers
- Securely naming resources

Context	Distributed Certification	Maintenance	Analysis and Results	Conclusion
				00
Conclusion				

A Distributed Certification System for Structured P2P Networks

François Lesueur, Ludovic Mé, Valérie Viet Triem Tong firstname.lastname@supelec.fr

Supélec, SSIR Group (EA 4039)

AIMS, July 2008 Bremen, Germany

