| Context | Background | Split Operation | Refresh operation | Analysis and Results | Conclusion |
|---------|------------|-----------------|-------------------|----------------------|------------|
|         |            |                 |                   |                      |            |
|         |            |                 |                   |                      |            |
|         |            |                 |                   |                      |            |
|         |            |                 |                   |                      |            |

## An Efficient Distributed PKI for Structured P2P Networks

# François Lesueur, Ludovic Mé, Valérie Viet Triem Tong firstname.lastname@supelec.fr

SUPÉLEC, SSIR Group (EA 4039), France

IEEE P2P, September 9 2009 Seattle, US



| Context   | Background | Split Operation | Refresh operation | Analysis and Results | Conclusion |
|-----------|------------|-----------------|-------------------|----------------------|------------|
| 000       |            |                 |                   |                      |            |
| Main Line |            |                 |                   |                      |            |
|           |            |                 |                   |                      |            |

## Security in P2P Networks

#### **Traditional View**

- Security is enforced by a central point
- *Capacities* may be proved by certificates (Certification Authorities)

#### Specificities of P2P Networks

Dynamic and Collaborative networks without Central Authority

#### Distributed Certification (Threshold Cryptography)

- Capacities are still proved by certificates
- These certificates are signed collaboratively by members
- $\Rightarrow$  Trust that t% of the nodes would not collude

| Context<br>0●0 | Background<br>000 | Split Operation | Refresh operation | Analysis and Results | Conclusion |
|----------------|-------------------|-----------------|-------------------|----------------------|------------|
| Main Line      |                   |                 |                   |                      |            |
| Applic         | ations            |                 |                   |                      |            |

#### Admission Control [COPS '08]

Sybil protection, only genuine members are certified

#### Misbehaving Nodes Exclusion [I2CS '08]

Nodes are monitored, misbehaviors are detected and excluded

#### Secure Naming of Resources

- P2P SIP directory (unique and provable intelligible names)
- P2P DNS system

 $\Rightarrow$  Intelligible names, not h(PublicKey)

| Context<br>00● | Background<br>000 | Split Operation | Refresh operation | Analysis and Results | Conclusion |
|----------------|-------------------|-----------------|-------------------|----------------------|------------|
| Main Line      |                   |                 |                   |                      |            |
| Outline        | е                 |                 |                   |                      |            |



- 2 Split Operation
- 3 Refresh operation
- Analysis and Results

| Context | Background | Split Operation | Refresh operation | Analysis and Results | Conclusion |
|---------|------------|-----------------|-------------------|----------------------|------------|
|         |            |                 |                   |                      |            |
|         |            |                 |                   |                      |            |
|         |            |                 |                   |                      |            |

## Background

| Context<br>000 | Background<br>●○○ | Split Operation<br>00000 | Refresh operation | Analysis and Results | Conclusion<br>00 |
|----------------|-------------------|--------------------------|-------------------|----------------------|------------------|
| Related Work   |                   |                          |                   |                      |                  |
| Polato         | d Mark            |                          |                   |                      |                  |

#### Fixed Number [Kong et al., 01]

- Certificate generated by a fixed number of peers (t, n)
- Mainly suits MANETs

#### Fixed Ratio with a Server [Saxena et al., 03]

- $\ + \$  Certificate generated by a fixed ratio of the peers
- Uses a central counter of the network size

$$(t, n) \rightarrow (t, t) \rightarrow (t', n')$$
: Robustness problem

#### Fixed Ratio without any Center (our previous scheme [AIMS 08])

- $+\,$  Certificate generated by a fixed ratio of the peers
- + Fully distributed scheme, no center
- Byzantine agreements in groups (20 to 40 peers)

| Context        | Background | Split Operation | Refresh operation | Analysis and Results | Conclusion |
|----------------|------------|-----------------|-------------------|----------------------|------------|
|                | 000        |                 |                   |                      |            |
| Previous schem | e          |                 |                   |                      |            |

## Fixing the Threshold Ratio

- RSA, *S* = (*e*, *m*)
- s additive shares e<sub>i</sub>
- Rep on g peers (*sharing* group)
- Ratio  $t = \frac{s}{n} = \frac{1}{g}$
- $o^e[m] = (\prod o^{e_i}[m])[m]$

#### t enforced by groups size

- g<sub>min</sub>: minimal size
- g<sub>max</sub>: maximal size

•  $\frac{1}{g_{max}} < t < \frac{1}{g_{min}}$ 



= 19

| Context<br>000 | Background<br>○0● | Split Operation | Refresh operation | Analysis and Results | Conclusion |
|----------------|-------------------|-----------------|-------------------|----------------------|------------|
| Previous sche  | me                |                 |                   |                      |            |
| Maint          | enance            |                 |                   |                      |            |

#### Three main operations

- Split: splits a group composed of more than  $g_{max}$  members
- Merge: merges two groups of less than  $g_{min}$  members
- Refresh: randomize shares after a split operation

#### Maintenance relies on byzantine agreements

- Costly when groups are composed of 20 to 40 members
- Peers join and leave : which peers participate ?
- Difficult to implement

#### $\Rightarrow$ Novel maintenance operations without agreements

| Context | Background | Split Operation | Refresh operation | Analysis and Results | Conclusion |
|---------|------------|-----------------|-------------------|----------------------|------------|
|         |            |                 |                   |                      |            |
|         |            |                 |                   |                      |            |
|         |            |                 |                   |                      |            |

## Split Operation

| Context<br>000 | Background<br>000 | Split Operation<br>●0000 | Refresh operation | Analysis and Results<br>000 | Conclusion |
|----------------|-------------------|--------------------------|-------------------|-----------------------------|------------|
| Previous schem | e                 |                          |                   |                             |            |
| Princip        | le                |                          |                   |                             |            |

- When a group is composed of more than  $g_{max}$  members
- Create two shares from one  $(e_{i0} + e_{i1} = e_i)$

#### Split ei

- **1** Decide a random value  $e_{i0}$ ,  $e_{i1} = e_i e_{i0}$
- 2 Migrate to the new groups  $e_{i0}$  and  $e_{i1}$
- 3 Refresh shares  $e_{i0}$  and  $e_{i1}$

#### Byzantine agreements

- Decide to split
- Decide e<sub>i</sub>

| Context<br>000 | Background<br>000 | Split Operation<br>○●○○○      | Refresh operation | Analysis and Results | Conclusion |
|----------------|-------------------|-------------------------------|-------------------|----------------------|------------|
| Previous sche  | eme               |                               |                   |                      |            |
| Splitti        | ng a shar         | e, <i>g<sub>max</sub></i> = 6 |                   |                      |            |



| Context<br>000 | Background<br>000 | Split Operation               | Refresh operation | Analysis and Results | Conclusion<br>00 |
|----------------|-------------------|-------------------------------|-------------------|----------------------|------------------|
| Previous sch   | eme               |                               |                   |                      |                  |
| Splitti        | ing a shar        | e, <i>g<sub>max</sub></i> = 6 |                   |                      |                  |



| Context<br>000 | Background<br>000 | Split Operation<br>○●○○○      | Refresh operation | Analysis and Results | Conclusion |
|----------------|-------------------|-------------------------------|-------------------|----------------------|------------|
| Previous sche  | eme               |                               |                   |                      |            |
| Splitti        | ng a shar         | e, <i>g<sub>max</sub></i> = 6 |                   |                      |            |



| Context<br>000 | Background<br>000 | Split Operation | Refresh operation | Analysis and Results | Conclusion |
|----------------|-------------------|-----------------|-------------------|----------------------|------------|
| Removing ag    | reements          |                 |                   |                      |            |
|                |                   |                 |                   |                      |            |

## Precompute all possible shares

#### Sharing trees

- Every peer of  $e_i$  know the sharing tree of  $e_i$
- The sharing tree of e<sub>i</sub> contains all the possible subshares of e<sub>i</sub>
- This tree is implicit and can be calculated from  $e_i$ :

$$e_{x0} = \mathsf{RNG}_{h(e_x)}$$
,  $e_{x1} = e_x - e_{x0}$ 

- No need to store the whole tree, only the root
- Every peer take the same decision without any agreement, at slightly different moments

|                    |    | 00000 |  |  |
|--------------------|----|-------|--|--|
| Removing agreement | ts |       |  |  |

### Splitting a share without agreements



François Lesueur, Ludovic Mé, Valérie Viet Triem Tong

| Context<br>000 | Background<br>000 | Split Operation | Refresh operation | Analysis and Results | Conclusion |
|----------------|-------------------|-----------------|-------------------|----------------------|------------|
| Removing ag    | reements          |                 |                   |                      |            |
| <u> </u>       |                   |                 |                   |                      |            |

#### Splitting a share without agreements



| Context<br>000 | Background<br>000 | Split Operation<br>○○○○● | Refresh operation | Analysis and Results | Conclusion |
|----------------|-------------------|--------------------------|-------------------|----------------------|------------|
| Removing ag    | greements         |                          |                   |                      |            |
|                |                   |                          |                   |                      |            |

### Confidentiality of the shares

#### Each share must be known in only one sharing group

• 
$$\frac{1}{g_{max}} < t < \frac{1}{g_{min}}$$
 iff peers know only one share

• After a split, every peer of 
$$e_i$$
 know both created shares  $(e_i = e_{i0} + e_{i1})$ 

#### $\Rightarrow$ Refresh operation randomizes shares and sharing trees

| Context | Background | Split Operation | Refresh operation | Analysis and Results | Conclusion |
|---------|------------|-----------------|-------------------|----------------------|------------|
|         |            |                 |                   |                      |            |
|         |            |                 |                   |                      |            |
|         |            |                 |                   |                      |            |

## Refresh operation

| Context<br>000  | Background<br>000 | Split Operation | Refresh operation<br>●000 | Analysis and Results<br>000 | Conclusion |  |  |  |  |
|-----------------|-------------------|-----------------|---------------------------|-----------------------------|------------|--|--|--|--|
| Previous scheme |                   |                 |                           |                             |            |  |  |  |  |
| Princip         | ole               |                 |                           |                             |            |  |  |  |  |

- After a split, to enforce confidentiality of shares
- Exchange some random value between two shares

Refresh  $e_x$  with  $e_y$ 

 $\textcircled{0} Decide a random value \Delta$ 

2 
$$e_x \rightarrow e_x + \Delta$$

3 
$$e_y 
ightarrow e_y - \Delta$$

#### Byzantine agreements

- Decide/Accept to refresh
- Decide  $\Delta$

| Context<br>000 | Background<br>000       | Split Operation | Refresh operation<br>0●00 | Analysis and Results | Conclusion |
|----------------|-------------------------|-----------------|---------------------------|----------------------|------------|
| Previous sch   | eme                     |                 |                           |                      |            |
| Refree         | shing e <sub>00</sub> a | and $e_{11}$    |                           |                      |            |



| Context<br>000 | Background<br>000       | Split Operation | Refresh operation<br>0●00 | Analysis and Results | Conclusion |
|----------------|-------------------------|-----------------|---------------------------|----------------------|------------|
| Previous sch   | eme                     |                 |                           |                      |            |
| Refree         | shing e <sub>00</sub> a | and $e_{11}$    |                           |                      |            |



| Context<br>000 | Background<br>000 | Split Operation | Refresh operation<br>○○●○ | Analysis and Results | Conclusion |
|----------------|-------------------|-----------------|---------------------------|----------------------|------------|
| Removing ag    | greements         |                 |                           |                      |            |
| Needs          | 3                 |                 |                           |                      |            |



| Context<br>000 | Background<br>000 | Split Operation | Refresh operation<br>○○○● | Analysis and Results | Conclusion |
|----------------|-------------------|-----------------|---------------------------|----------------------|------------|
| Removing agree | ements            |                 |                           |                      |            |

## Values are added to the leafs of sharing trees



| Context<br>000 | Background<br>000 | Split Operation | Refresh operation<br>○○○● | Analysis and Results | Conclusion |
|----------------|-------------------|-----------------|---------------------------|----------------------|------------|
| Removing agree | ements            |                 |                           |                      |            |

## Values are added to the leafs of sharing trees



| Context | Background | Split Operation | Refresh operation | Analysis and Results | Conclusion |
|---------|------------|-----------------|-------------------|----------------------|------------|
|         |            |                 |                   |                      |            |
|         |            |                 |                   |                      |            |
|         |            |                 |                   |                      |            |

## Analysis and Results

| Context<br>000     | Background<br>000 | Split Operation | Refresh operation | Analysis and Results<br>●○○ | Conclusion |  |  |
|--------------------|-------------------|-----------------|-------------------|-----------------------------|------------|--|--|
| Experimental setup |                   |                 |                   |                             |            |  |  |
| Setup              |                   |                 |                   |                             |            |  |  |

Simulations use PeerSim:

- Up to 100 000 online peers
- Peers are online 10% of the time
- Groups are composed of 20 to 40 members  $\Rightarrow$  Tolerates 20% of attackers

| Context<br>000 | Background<br>000 | Split Operation<br>00000 | Refresh operation | Analysis and Results<br>○●○ | Conclusion |
|----------------|-------------------|--------------------------|-------------------|-----------------------------|------------|
| Simulations    |                   |                          |                   |                             |            |
|                | <u> </u>          |                          |                   |                             |            |

## Security: Size of shares



| Context     | Background | Split Operation | Refresh operation | Analysis and Results | Conclusion |
|-------------|------------|-----------------|-------------------|----------------------|------------|
|             |            |                 |                   | 000                  |            |
| Simulations |            |                 |                   |                      |            |

## Efficiency: Size of sharing trees



| Context<br>000 | Background<br>000 | Split Operation | Refresh operation | Analysis and Results | Conclusion<br>●○ |
|----------------|-------------------|-----------------|-------------------|----------------------|------------------|
| Conclusion     |                   |                 |                   |                      |                  |
|                |                   |                 |                   |                      |                  |

## Efficient Distributed PKI

#### **Provided Service**

- Cryptographic proof of agreement of a fixed ratio of the nodes
- Ratio is enforced with distributed protocols

#### Efficiency

- Maintenance is local to one or two groups
- Decisions are local to each node, no byzantine agreements
- Sharing trees remain small

#### Applications

- Protection from Sybil Attack
- Exclusion of attackers
- Secure naming of resources

| Context<br>000 | Background<br>000 | Split Operation | Refresh operation | Analysis and Results | Conclusion<br>0 |
|----------------|-------------------|-----------------|-------------------|----------------------|-----------------|
| Conclusion     |                   |                 |                   |                      |                 |

## An Efficient Distributed PKI for Structured P2P Networks

# François Lesueur, Ludovic Mé, Valérie Viet Triem Tong firstname.lastname@supelec.fr

SUPÉLEC, SSIR Group (EA 4039), France

IEEE P2P, September 9 2009 Seattle, US

