
Detecting and Excluding Misbehaving

Nodes in a P2P Network

Détection et Exclusion de Nœuds Malveillants dans un

Réseau Pair-à-Pair

François Lesueur — Ludovic Mé — Valérie Viet Triem Tong

ABSTRACT. Given their fully distributed architecture, P2P networks allow the design of low

cost and high availability systems but also pose new security problems. In these collaborative

networks, security properties need to be ensured by the participants themselves. In this paper,

we propose to detect and exclude misbehaving nodes to allow honest participants to enforce

security properties. The proposed scheme is fully distributed.

RÉSUMÉ. De par leur nature totalement distribuée, les réseaux pair-à-pair permettent de

mettre en place des systèmes à faible coût et haute disponibilité mais posent également de nou-

veaux problèmes de sécurité. Dans ces réseaux collaboratifs, les propriétés de sécurité doivent

être garanties par les participants eux-mêmes. Dans cet article, nous proposons de détecter et

d’exclure des nœuds malveillants afin de permettre aux nœuds honnêtes de garantir des pro-

priétés de sécurité. Le système proposé est complètement distribué.

KEYWORDS: P2P, Security, Behavior, Detection, Exclusion

MOTS-CLÉS : Pair-à-Pair, Sécurité, Comportement, Détection, Exclusion

1. Introduction

P2P networks have been widely used for the last few years to de-
sign low cost and high availability systems. Indeed, P2P networks
are fully distributed systems composed of many nodes (ordinary PCs)
provided with replication mechanisms, allowing high availability. File
sharing applications are well known (Gnutella [Cli00]), but these net-
works can also provide distributed file systems (CFS [DKK+01]), pub-
lish/subscribe applications (Meghdoot [GSAA04]), multicast (Split-
Stream [CDK+03]) or Voice over IP (P2PSIP [BLJ05]).

There are two types of P2P networks: unstructured ones and struc-
tured ones. In unstructured P2P networks (Gnutella [Cli00]), requests
are broadcasted or routed through random walks. In structured ones
(Chord [SMK+01]), requests are routed efficiently using generated
routing tables. We consider here structured P2P networks security.

A

B

C

6

8

22

26

3032

45

51

60

15

38

55

Figure 1: Simplified
representation of Chord
with identifiers going
from 0 to 26 − 1 = 63.
�, � and � are nodes
(PC) and ◦ are re-
sources (files). Node
A, which nodeId is 15,
is responsible for re-
sources 60, 6 and 8.

Structured P2P networks provide a vir-
tual space called overlay. Each node
(PC) is uniquely identified by a nodeId ∈
KeyIds; in the same way, each resource

(file, . . .) is uniquely identified by a key
identifier keyId, keyId ∈ KeyIds (for
a file, the key is usually its SHA1 finger-
print). Nodes and resources thus share the
same identifier space KeyIds, which is fi-
nite but supposed large enough (often 2160

elements due to the size of SHA1 hashes).
Each node is responsible for the manage-
ment of a part of the resources. The over-
lay provides routing facilities with a loga-
rithmic cost for a node to access a specific
identifier.

In Chord for instance, the identifiers
space goes from 0 to 2160 − 1 and each
node is responsible for all the resources

which identifiers are between its identifier and the one of its preceding
node in the overlay. This organization is illustrated in Figure 1.

2

To the contrary of classical networks in which security is provided
through a centralized entity, P2P networks are collaborative networks in
which each member is responsible for a part of the system. To resolve
security problems, impact of malicious nodes has to be minimized.

We propose thus a scheme to identify users and then detect and ex-
clude misbehaving members in a P2P network. The first part, presented
in [LMT08c], allows users to obtain a unique provable identity and
protects against the sybil attack [Dou02]. An accepted node obtains
a unique membership certificate. The second part, presented in this
paper, is a distributed misbehavior detection and node exclusion sys-
tem, allowing to exclude misbehaving nodes from the network through
the agreement of a static ratio of the nodes and without an administra-
tive authority. Exclusion is materialized by the revocation of the mem-
bership certificate and the revocation process is handled using the dis-
tributed certification we presented in [LMT08b] (revocation is juste a
special case of certification). In this system, the normal behavior is dy-
namically determined by each node using static specifications defining
how to compare different nodes behaviors: a node is detected as misbe-
having if it shows a minority behavior. We thus make the (reasonable)
assumption that there is a majority of honest nodes in the network.

We present in Section 1 the related work. In Section 2, we present
the distributed certification we use to revoke membership certificates.
In Section 3, we overview the detection and exclusion of misbehaving
nodes. In Section 4, we detail the detection part and in Section 5, we
precise the exclusion part. In Section 6, we analyze experimental results
and we finally conclude and suggest some future work.

2. Related Work

In this section, we present work related to the evaluation of nodes
in P2P networks. We first present work on admission control to a peer
group and we then introduce reputation systems.

2.1. Admission Control to a Group

Kim et al. proposed in [KMT03] to limit the number of attackers in
peer groups (P2P networks but also ad-hoc networks) through admis-

3

sion control to the network. Admission control is based on a Group

Charter defining conditions to enter the network. A newcomer’s access
is then granted through a voting system among the members.

However, defining accepting conditions in P2P groups seems unre-
alistic since P2P systems are naturally open and large networks. Since
open, everyone should be able to access the network; since large, we
cannot rely on a significant part of the members knowing each new-
comer. A newcomer can only be known by a very slight fraction of
the members, and so relying on this very slight fraction of members
to accept this newcomer would allow malicious users to easily join the
network. Limiting the number of attackers in P2P networks can thus
only be a reaction to misbehaving members, rejecting such members
after bad behavior, and not a prevention.

2.2. Reputation Systems

Precisely, reputation systems [JIB05] assess nodes behavior and then
apply relevant rules. Each node attributes each other node a given rep-
utation, computed from local observations and recommendations. Rep-
utation systems allow to favor good members over selfish ones.

However, even using recommendations, reputation systems are not
tailored to exclude attackers after only one attack. If a honest node
N detects an attacker A, N can stop communicating with A but other
nodes will continue to communicate with A. In fact, other nodes cannot
be sure that N is honest and so need other testimonies. Thus, an attacker
attacking only a few nodes can be seen as honest by most of the nodes,
whereas these few nodes might be in fact the replicas of an attacked
resource. Some actions such as fake responses should lead directly to
the attacker’s exclusion, as soon as a single node detects it. We propose
thus in this paper a complementary system which allows to directly and
globally exclude some types of attackers.

3. Distributed Certification

As stated in the introduction, we use the distributed certification
scheme we proposed in [LMT08b] to revoke membership certificates

4

(revocation is a special case of certification) and we thus briefly de-
scribe relevant parts of this scheme. In this system, signing some data
requires the collaboration of a fixed ratio t of the number of nodes. This
ratio is enforced using a fully distributed scheme which tolerates mis-
behaving nodes and thus complies with the P2P basics. To our best
knowledge, this is the only fully distributed scheme based on the co-
operation of a fixed ratio of nodes instead of a fixed number of nodes,
which is mandatory in varying size P2P networks.

The network is characterized by an RSA public/secret key pair
(P, S), P = (d,m) being publicly known and S = (e,m) being shared
among the nodes (no node knows S entirely). This key pair is origi-
nally generated by founding members using a distributed algorithm as
Boneh and Franklin proposed in [BF97]. The network is decomposed
in s sharing groups, each group knowing one share ei of S such that the
sum of all the different shares equals e. In this case, the RSA signature
of some data d is de[m] = d

Ps
i=1 ei [m] =

� �s
i=1 dei [m]

�
[m]. In other

words, the RSA signature of d with S, which is de[m], is equal to the
product of the partial signatures with each share modulo m.

Signing a certificate requires then every share and thus the collabo-
ration of one node of each sharing group. Given gmin and gmax the min-
imal and maximal sizes of sharing groups, the ratio t of nodes needed
to sign a certificate verifies 1

gmax
< t <

1
gmin

and thus, sharing groups
can split (resp. merge) when nodes join (resp. leave) with only local
knowledge to enforce this ratio t.

e
0

e
10

e
11

NodeId = 11*

NodeId = 10*

NodeId = 0*

e

A

C

B

Figure 2: Distribution of
three shares e0,e10 and e11

with e = e0 + e10 + e11.

Each share is uniquely identified
by a binary shareId and is only
known by nodes which identifiers are
such that nodeId = shareId∗ in
binary form (i.e., shareId is a bi-
nary prefix of nodeId). Splitting a
group knowing ei (resp. merging two
groups knowing ei0 and ei1) creates
two groups knowing respectively ei0

and ei1 (resp. one group knowing ei)
such that ei = ei0 + ei1. This distri-
bution is illustrated in Figure 2.

5

When a node A which identifier starts with 0 wants to sign some data
d with S = (e,m), A recursively partially signs d with (e0, m) and asks
a node B which identifier starts with 1 to partially sign it with (e1, m).
B then partially signs it with (e10, m) and recursively asks C to partially
sign it with (e11, m). A node stops the recursion when it is asked for its
own share, in which case it returns dei [m]; otherwise, the node returns
the product of the two recursive calls. A finally gets the product of the
partial signatures with all shares which is the signature with S.

In this scheme, colluding attackers may eventually obtain every share
of S or control every node in a sharing group, in which case the network
is considered broken. Previous analysis showed that this scheme can
resist such attacks. For instance, in a 10, 000 nodes network with gmin =
20 and gmax = 40, the probability to obtain every share is infinitesimal
for less than 20% of attackers and the probability to control every node
in a sharing group is infinitesimal for less than 60% of attackers.

4. Detection and Exclusion

We propose to identify users and then to detect and exclude misbe-
having members. Each node is first accepted in the network through
a sybil-protection mechanism as the one we proposed in [LMT08c].
An accepted node obtains a unique certificate proving its membership.
Then, misbehaving nodes are automatically excluded to limit their num-
ber. Nodes are thus monitored through the messages they send and those
showing a bad behavior are excluded. In the following, we present the
detection and exclusion of misbehaving nodes.

The detection of misbehaviors is based on Observable Behavior
Specifications (OBS) (see Section 5). We assume that the majority of
the nodes are well-behaving and so misbehaviors are detected by differ-
ence from other nodes. Since misbehaving nodes are only a minority,
they have a different behavior from the majority. Normal behaviors are
deduced dynamically according to observed behaviors and OBS.

We propose then to prove misbehaviors to lead to node exclusion.
When a node detects a misbehavior, it generates a proof of this misbe-
havior. Such a proof must be verifiable by any other node in the network

6

and should thus not contain local unverifiable information. Moreover, a
misbehavior proof leading directly to node exclusion, an attacker should
not be able to forge a proof. In the proposed system, proofs are based
on exchanged messages.

This proof is then used to globally exclude the misbehaving node
through the collaboration of a given ratio of the nodes (see Section 6).
The certificate of the node, which is its membership proof, is revoked
using the distributed certification algorithm presented in Section 3.

5. Detecting Misbehaviors

In this section, we present the detection of misbehaving members.
We first detail the precautions needed to prove misbehaviors. Then, we
define the Observable Behavior Specifications (OBS) used to compare
different nodes behaviors and we illustrate them on a proposed attack.
Finally, we present the detection architecture.

5.1. Precautions to Consider

In our system, misbehaviors are proved and since a proof directly
leads to the exclusion of the concerned node, an attacker should not be
able to forge proofs. First, messages are signed in order to be unrepu-
diable and unforgeable. Then, we present in this section precautions to
be able to judge the validity of a proof. We present timeframes allowing
to check that observed behaviors are comparable and decorellation pre-
venting an attacker from forging proofs with the help of accomplices.

5.1.1. Timeframes

Since P2P networks are dynamic, responses to the same request may
be different over time. For instance, after the refresh of a share identified
as shareId, the partial signature of given data with shareId changes.

To distinguish such legitimate changes from misbehaviors, nodes are
provided with a common clock. The needed precision depends on the
resources dynamics, but if changes are not very frequent (refreshes are
not so frequent for instance), a precision of a few minutes is sufficient.

7

Nodes can initially synchronize their local clocks using NTP servers,
an already deployed clock synchronization mechanism, and then rely
solely on these local clocks.

Each response contains then two dates: the date since when this re-
sponse has been valid (for instance the date when the share was last
refreshed) and the date when the response has been sent. Dates are here
used in the wide sense and contain days but also hours and minutes.
The recipient accepts the message if and only if the emission date is the
current date, tolerating a shift of a few minutes. Dates allow then to
compare messages which should be the same.

5.1.2. Decorellation

Since nodes detect misbehaviors by the comparison of several re-
sponses to the same request, an attacker could forge a misbehavior proof
by requesting some accomplices and one honest node: this honest node
would exhibit a minority behavior and so would be detected as misbe-
having.

To prevent this attack, the set of compared nodes is constrained:
nodes used to generate a misbehavior proof must have uniformly dis-
tributed node identifiers among all the nodes eligible for the request.
Since attackers have truly random identifiers (otherwise, this would be
a sybil attack and the identification of users to enter the network pre-
vents the sybil attack), the ratio of attackers in the constrained set of
nodes is the same as in the network, hence a minority.

5.2. Format of Observable Behavior Specifications

The behavior of a node is reduced to its observable part: the mes-
sages it sends. Moreover, the misbehaviors are detected by the com-
parison to other nodes behaviors. OBS define thus how to compare
messages of several nodes to detect misbehaviors.

We consider here that messages are composed of the nodeId of the
sender node, an operation, a payload and a timeframe. The payload it-
self is composed of several fields depending on the type of message and
is independent of the sender (all honest nodes reply with the same pay-

8

35 10 d x

43 10 d x

46 10 d y

nodeId Payload

Discriminant

Certification

Attack

Operation

Certification

Certification

Q
u
o
ru

m
t1, t2

Timeframe

t1, t2

t1, t2

Figure 3: Three messages showing an attack against signature by the
node 46. The two messages from 35 and 43 have the same payload
and form the quorum. The message from 46 has the same discrimi-
nant and hence should have the same payload if 46 was honest; how-
ever, the payload is different and 46 is detected as an attacker.

load for a given request). The proposed scheme compares thus the pay-
loads of the messages to detect misbehaviors. The timeframe is com-
posed of two dates defining since when this response has been valid and
when this response has been sent. This format of message is illustrated
in Figure 3 which represents more precisely an attack against signature
(see Section 5.3).

An OBS first specifies the attacked operation. In Figure 3, the three
messages concern a Certification operation.

An OBS then describes the direction of attack which defines if the
attack is in the request for an operation or in the response.

The discriminant defines the fields of the payloads which must be
equal to consider that the payloads should be the same, if all the nodes
were honest. The discriminant is composed of fields on which attackers
cannot cheat, for instance representing the request they are answering:
attacks consist thus in biasing the other fields of the payload. In Figure
3, the discriminant is composed of two fields defining the partial signa-
ture which was asked and the three presented messages have the same
discriminant: these messages should be the same if nodes were honest.

The quorum defines the number of identical payloads needed to con-
sider that the contained value is the valid one. In Figure 3, if we con-

9

sider an OBS with a quorum of 2 and the proposed discriminant, then
the messages from nodes 35 and 43 prove that the valid payload is com-
posed of 10, d and x. Then, the different payload sent by 46 is consid-
ered as an attack (same discriminant but different payload).

Finally, the scope defines the set of eligible nodes for the request.
This set can be the whole network, a set of nodes (for instance k repli-
cas) or the nodes sharing a given prefix (for a partial signature in dis-
tributed certification). This scope allows to define the set of identifiers
in which the compared nodes representing the quorum have to be uni-
formly distributed and enforces then the decorellation.

5.3. Detecting an Attack against Signature

We plan on detecting attacks on any application. However, we start
by detecting attacks against the distributed certification since the exclu-
sion mechanism presented in this paper relies itself on this distributed
certification. In this paper, we focus precisely on the attack against
signature; the interested reader can refer to [LMT08a] for two other de-
tected attacks against the distributed certification. We propose then in
future work to detect attacks against other P2P services such as DHT.

In the distributed certification presented in Section 3, an attacker can
return a wrong partial signature when asked to sign with its own share
or return a wrong product otherwise. To prevent this attack, each node
asks nbAsks nodes instead of one and uses the majority result; however,
it is crucial to limit these attacks to improve the performance (asking
several nodes is expensive) and to prevent attackers from becoming a
majority, in which case the certification would not work anymore. The
payload of a response contains three fields: the share identifier which
was asked (shareId), the data which has been signed (data) and the
partial signature returned (psig). This attack is the one illustrated in
Figure 3 with shareId = 10, data = d and psig = x or y.

To detect the attack against signature, we propose to compare the
nbAsks responses (nbAsks = 3 in the figure). This attack consists in
sending a fake response to a partial signature request and so the oper-

ation is Certification and the direction is response. This attack resides

10

in replying a fake psig (y instead of x in the figure) for given shareId

and data and so the fields which have to be equal among compared
payloads (discriminant) are shareId and data. The quorum is fixed to
nbAsks+1

2 which means that a payload is considered valid as soon as the
majority of the nodes returned it. The eligible nodes for a request are
all the nodes which identifiers are prefixed by the share identifier asked
and the scope is thus all these nodes.

When some attackers have been excluded, honest nodes automati-
cally detect that all the partial signatures are valid and can thus dynam-
ically reduce the number of nodes asked for each partial signature, in
order to balance the correctness and the efficiency of the requests.

5.4. Detection Architecture

We first overview the detection mechanism, composed of the classi-

fier and of the checker. We then detail the classifier and the checker.

5.4.1. Overview

To detect misbehaviors, each node monitors all the messages it sends
and receives. This observer is placed between the applicative layer, rep-
resented here by the distributed certification mechanism, and the P2P
overlay. The detection of misbehaviors is split in two parts: the classi-

fier and the checker (Figure 4).

First, the classifier (see Section 5.4.2) associates each sent or re-
ceived message to other related messages in a class, according notably
to discriminants. For instance, Figure 3 corresponds to a class of mes-
sages. Behaviors are then checked among messages of the same class.

When a message is added to a class, the checker (see Section 5.4.3)
verifies if this class corresponds to a misbehavior. If a misbehavior is
detected, a misbehavior proof accusing one or several nodes is created
from this class.

This misbehavior proof is then used to exclude the misbehaving node
(see Section 6).

11

Class 1 Class 2 Class n

Checker

Attack ?

Classifier

Messages

Misbehavior proofs

Figure 4: Detection and Exclusion Architecture.

5.4.2. Classifier

The classifier associates in a class messages which should be com-
pared to detect misbehaviors. Comparable messages are the ones corre-
sponding to a given OBS, having the same discriminant and sent during
the same timeframe. Such messages should be identical and so a differ-
ent message in a class indicates a misbehavior, detected by the checker.

Each new message is labeled by a set of triplets
{(OBS,Discriminant, T imeframe)∗} which is initially empty.
First, a triplet is added to this set for each OBS defined on the operation
of this message. Then, the discriminant of each of these triplets is set
to the values found in the message, w.r.t. the discriminant of the related
OBS. Finally, the timeframes are set to the timeframe of the message.
For instance, the three messages of Figure 3 are labeled by the set
{(Signature OBS, (10, d), (t1, t2))}.

Each new message is then associated in a class to every other mes-
sage having a common triplet in its label. Two timeframes are con-
sidered common as soon as their intersection exists, i.e., they have a
common period of validity. The three messages of Figure 3 form thus a
class and should be identical if all the nodes were honest.

Each class is finally erased after a fixed amount of inactivity time.

12

5.4.3. Checker

When a message is added to a class, the checker applies the OBS to
detect attacks in this class, attacks which correspond to differences in
the payloads. If a misbehavior is detected, the checker creates the proof
accusing one or several nodes.

A misbehavior proof is a minimal class proving the misbehavior. A
proof contains the minimal number of messages representing the normal
behavior, i.e., the quorum of the OBS triggered, plus the message(s) of
the misbehaving nodes.

However, a misbehaving node may try to fool the system by send-
ing a fake response at a date t and announcing this response is valid
since t − �, � being a short time. Given the imprecise clock used, it is
not possible without further investigations to detect whether this is an
attack or whether the valid response has just changed. In such a case,
the checker waits a bit and then re-asks the nodes composing the quo-
rum. If the suspected node is honest then the novel responses also take
into account the change of the valid value; if the suspected node is mis-
behaving then the novel responses include the date t in their validity
period and the misbehavior proof includes thus these new messages as
well as the old message of the attacker.

The node which has detected the misbehavior uses then the proof to
exclude the misbehaving node through the mechanism presented in the
following section.

6. Excluding Attackers

The exclusion of an attacker is materialized by the revocation of its
certificate. We first present how a certificate is revoked. Then, we ex-
plain the publication of the revocation and we finally detail what hap-
pens after an exclusion.

6.1. Certificate Revocation

A certificate revocation is of the form {Cert, revoked}S , where
Cert is the membership certificate to revoke and revoked is a flag indi-

13

cating the revocation, all that being signed with the network secret key
S. Certificate revocation uses then the same algorithm as distributed
certification to obtain the signature with S. The node detecting the mis-
behavior provides the proof of the misbehavior to each node involved
in the revocation.

Each involved node locally validates the proof. Each node checks
the proof as if it was a local class of messages and also verifies that
the quorum is constituted of nodes uniformly distributed in the scope
of the operation (otherwise, an attacker would be able to ask some ac-
complices to bias the normal behavior). However, these nodes cannot
be truly uniformly distributed since node identifiers represent only a
small part of the identifiers space: chosen nodes are in fact the ones
responsible for the identifiers which are uniformly distributed. During
the revocation, each node has thus to check whether the proposed nodes
are really responsible for these resources.

To be able to decide if a given node is close enough to a resource
to be responsible for it, each node calculates the density of nodes in
its neighborhood. Node identifiers being uniformly distributed using a
hash function, this density is roughly the same in the whole overlay and
a node can thus estimate the density of nodes in the overlay. Even if not
so precise, this heuristic allows to limit the set of nodes used in a proof.

If the proof is valid, this node proceeds with the distributed certifica-
tion and the initiator node finally obtains the signed revocation if a given
ratio of the nodes validated the proof. It distributes then this revocation
to other nodes.

6.2. Revocation Publication

To effectively exclude the misbehaving node, the revocation must
be notified to all nodes. To limit the communications, revocations are
stored in the DHT and each node checks for their presence before com-
municating with an unknown node (however, nodes mostly communi-
cate with a small and quite stable subset of the nodes). If the identifier of
the attacker is nodeId then this revocation is put at h(nodeId) (putting
it at nodeId would transiently put this revocation under the responsibil-

14

ity of the attacker). Given the replication mechanisms of a DHT, this
revocation is finally stored on some successors of h(nodeId), which
guarantees its availability even if one of the replicas is malicious.

Revocations are also directly sent to nodes already communicat-
ing with the attacker. These nodes are the members of the attacker’s
sharing group, the nodes which have the attacker in their routing ta-
ble, the nodes which are in the attacker’s routing table and possibly
some nodes connected at the applicative level. Members of the sharing
group of the attacker are easily found since the prefix of their iden-
tifiers is known (the attacker has the same prefix). The way to find
nodes which have the attacker in their routing tables and nodes which
are in the attacker’s routing table depends on the overlay used. In
Chord for instance, there are 2160 identifiers and the attacker identified
by nodeId has in its routing table the nodes succeeding the identifiers
nodeId + 2159, nodeId + 2158, etc. Nodes having the attacker in their
routing table can be found in the same way. Finally, finding nodes con-
nected to the attacker at the applicative level depends on the applica-
tion. The distribution of revocations could also be handled through a
publish/subscribe mechanism, each node interested in the hypothetical
revocation of a given node subscribing to this feed and the revocation
being published on this feed. All that being done, the attacker cannot
communicate anymore with any node in the overlay.

6.3. Actions after an Exclusion

The exclusion of a node leads to modifications of the P2P overlay and
to maintenance of the shared secret key of the network S. Modifications
of the overlay are the same than when a node leaves the network: the
attacker is replaced in routing tables and another node takes control of
the resources it was responsible for.

Then, the share of the secret key which was known by this attacker
must be invalidated. Indeed, this share being known by an attacker,
it is considered exposed. This share is thus refreshed as detailed in
[LMT08b], operation in which this share is mixed with another one ren-
dering old version of both shares useless. Basically, two groups agree
on a random value ∆, one group adds it to its share and the other one

15

subtracts it: both shares change yet their sum remains constant. Finally,
since the group of the attacker may become composed of less than gmin

members after the exclusion, this group may trigger a merge operation
with the adjacent group.

7. Simulations

In this section, we present experimental results. These results are
presented in the case of the attack against signature which seems the
most dangerous. Indeed, this attack quickly decreases the performance
of the certification system, certification system which is used to revoke
misbehaving members. In the first part, we study the reliability of the
detection system. In the second part, we show the impact of node ex-
clusion in the lifetime of the system.

7.1. Detection System Reliability

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
e
rc

e
n
ta

g
e
 o

f
fa

ls
e
 d

e
te

c
ti
o
n
s

Percentage of attackers

nbAsks = 3
nbAsks = 5
nbAsks = 7

Figure 5: Percentage of
false detections in function
of the percentage of attack-
ers. Each experiment con-
tains 5000 nodes.

Figure 5 shows the percentage of
false detections (honest nodes detected
as misbehaving) in function of the per-
centage of attackers. This figure shows
a symmetry which corresponds to the
change of the normal behavior. In the
first half of the curve, attackers are a
minority and the normal behavior is the
honest one; in the second half, attack-
ers are a majority and the normal be-
havior is the misbehaving one, yielding
the detection of honest nodes as misbe-

having. However, we consider that a ratio of 1 attacker for 10 nodes is
already quite high. In such a case, the percentage of false detections
is less than 5% when each node asks each partial signature to 5 nodes
(nbAsks = 5). Irregularities with more than 90% of attackers are ex-
plained by the fact that attackers collude and never participate in the de-
tection of one of them, whereas honest nodes may testify among them.

16

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000

 0 5 10 15 20 25 30

P
e

rc
e

n
ta

g
e

 o
f

h
o

n
e

s
t

n
o

d
e

s
 e

x
c
lu

d
e

d

Number of nodes

Percentage of attackers

Percentage of attackers
Number of nodes

(a) Percentage of the honest nodes which
are wrongly excluded in function (top axis)
of the percentage of attackers in a 5000
nodes network or (bottom axis) of the num-
ber of nodes with 15% of attackers. Each
partial signature is asked to 5 nodes.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50

P
e

rc
e

n
ta

g
e

Number of certifications

Success with nbAsks = 5
Success with nbAsks = 1

Remaining attackers

(b) Percentage of success of the certifica-
tion algorithm in function of the number
of already done certifications. Each exper-
iment starts with 5000 nodes and 15% of
attackers. The curve with nbAsks = 1 cor-
responds to the certifications succeeding on
the first call and the one with nbAsks = 5
to the certification succeeding with the fall-
back algorithm. The remaining percentage
of attackers is also drawn.

Figure 6: Impact of exclusion

7.2. Impact of Exclusion

Figure 6(a) shows the percentage of the honest nodes which are
wrongly excluded with nbAsks = 5. Honest nodes can be wrongly
excluded if attackers are enough to return a (wrong) majority response.
Even if some misbehaviors are not detected the first time, all attackers
are finally excluded in the simulated configurations and the number of
honest nodes which have been excluded is calculated when all attackers
have been excluded. The first curve is drawn for networks composed of
5000 nodes with a percentage of attackers varying from 0 to 25%; the
second curve is drawn for networks composed of 0 to 10000 nodes with
15% of attackers. The number of honest nodes excluded is low since
only 2% of them are wrongly excluded in a 5000 nodes network with
initially 15% of attackers.

In Figure 6(b), we illustrate the impact of exclusion on the success of
certification operations. Each node asks first only 1 node and then 5 if
the obtained signature is invalid. This figure shows the success of suc-
cessive certifications and shows that with initially 15% of attackers in a

17

5000 nodes network, the algorithm with nbAsks = 1 is quickly usable
after having used nbAsks = 5 a few times, this last value allowing to
exclude misbehaving nodes. Success with nbAsks = 1 quickly grows
after only a few certifications. This figure also shows the remaining per-
centage of misbehaving nodes after each certification. The percentage
of misbehaving nodes drops from 15% to 1% in 10 certifications.

8. Conclusion

In this paper, we proposed to detect and exclude misbehaving nodes
in a P2P network. The detection is based on the comparison of nodes
behavior and the exclusion is handled through distributed algorithms.
Based on an attack against signature, we precisely described the mech-
anisms to detect misbehaviors, to prove misbehaviors to other nodes and
finally to exclude misbehaving nodes through revoking their certificates.
The mechanism is extensible to detect attacks on other applications. We
finally experimentally studied the performance of the proposed system.
These simulations showed that our system performs well in networks
composed of up to 10% of attackers, which is a high percentage since
these attackers are progressively excluded from the network.

In this proposition, each node monitors and temporarily saves many
messages. It will thus be interesting to study the impact if each node
only monitors a subset of message classes. Since several nodes may
see the same attack, it should be possible to attain comparable perfor-
mance. We are now interested in evaluating the benefits of this security
mechanism on a P2P application. In a DHT for instance, an attacker can
return a wrong value for an asked resource. Since resources are repli-
cated on several nodes, an expensive countermeasure is to ask several
nodes, through different routes, for the same resource. With our detec-
tion and exclusion system, it is possible to detect the attackers which
returned a wrong value, exclude them, and finally reduce the number of
nodes asked for the same resource without sacrificing reliability.

Acknowledgements

The authors thank Orange Labs for partially funding this work and especially
Hervé Debar for his involvement in the project and his advice and valuable comments.

18

References

[BF97] Dan Boneh and Matthew Franklin. Efficient generation of
shared RSA keys. In Proceedings of the 17th Annual Inter-

national Cryptology Conference (CRYPTO), volume 1294
of Lecture Notes in Computer Science. Springer, 1997.

[BLJ05] David A. Bryan, Bruce B. Lowekamp, and Cullen Jennings.
SOSIMPLE: A serverless, standards-based, P2P SIP com-
munication system. In Proceedings of the International

Workshop on Advanced Architectures and Algorithms for

Internet Delivery and Applications (AAA-IDEA), 2005.

[CDK+03] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec,
Animesh Nandi, Antony I. T. Rowstron, and Atul Singh.
Splitstream: high-bandwidth multicast in cooperative envi-
ronments. In Proceedings of the 19th ACM Symposium on

Operating Systems Principles (SOSP), volume 37, 5 of Op-

erating Systems Review, pages 298–313. ACM Press, 2003.

[Cli00] Clip2. The gnutella protocol specification
v0.4. http://www9.limewire.com/developer/

gnutella protocol 0.4.pdf, 2000.

[DKK+01] Frank Dabek, M. Frans Kaashoek, David Karger, Robert
Morris, and Ion Stoica. Wide-Area cooperative storage
with CFS. In Proceedings of the 18th ACM Symposium on

Operating Systems Principles (SOSP), volume 35, 5 of Op-

erating Systems Review, pages 202–215. ACM Press, 2001.

[Dou02] John R. Douceur. The sybil attack. In Proceedings of the

International Workshop on Peer-to-Peer Systems (IPTPS),
volume 2429 of Lecture Notes in Computer Science, pages
251–260. Springer, 2002.

[GSAA04] Abhishek Gupta, Ozgur D. Sahin, Divyakant Agrawal,
and Amr El Abbadi. Meghdoot: Content-based pub-
lish/subscribe over P2P networks. In Proceedings of the

ACM/IFIP/USENIX International Middleware Conference

19

(Middleware), volume 3231 of Lecture Notes in Computer

Science, pages 254–273. Springer-Verlag, 2004.

[JIB05] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey
of trust and reputation systems for online service provision.
In Decision Support Systems, 2005.

[KMT03] Yongdae Kim, Daniele Mazzochi, and Gene Tsudik. Ad-
mission control in peer groups. In Proceedings of 2nd IEEE

International Symposium on Network Computing and Ap-

plications (NCA), pages 131–139. IEEE Computer Society,
2003.

[LMT08a] François Lesueur, Ludovic Mé, and Valérie Viet Triem
Tong. Detecting and excluding misbehaving nodes in a
P2P network. Technical Report TR-2008-04, SUPELEC,
2008. http://www.rennes.supelec.fr/ren/perso/

flesueur/publis/LMV08_tr_04.pdf

[LMT08b] François Lesueur, Ludovic Mé, and Valérie Viet Triem
Tong. A Distributed certification system for structured
P2P networks. In Proceedings of the 2nd International

Conference on Autonomous Infrastructure, Management

and Security (AIMS), Lecture Notes in Computer Science.
Springer-Verlag, 2008.

[LMT08c] François Lesueur, Ludovic Mé, and Valérie Viet Triem
Tong. A sybil-resistant admission control coupling Sybil-
Guard with distributed certification. In Proceedings of the

4th International Workshop on Collaborative Peer-to-Peer

Systems (COPS). IEEE Computer Society, 2008.

[SMK+01] Ion Stoica, Robert Morris, David R. Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable peer-
to-peer lookup service for internet applications. In Pro-

ceedings of the ACM SIGCOMM Conference (SIGCOMM),
Computer Communication Review, pages 149–160. ACM
Press, 2001.

20

