
MI-LXC: A Small-Scale Internet-Like Environment for Network Security
Teaching

FRANÇOIS LESUEUR, INSA Lyon, CITI, EA3720, France and Laboratoire Cogitamus, France

CAMILLE NOÛS∗, Laboratoire Cogitamus, https://www.cogitamus.fr/, France

MI-LXC is a framework to simulate an internet-like infrastructure on top of LXC to practice cybersecurity on a realistic environment.
MI-LXC follows the infrastructure-as-code paradigm to program the topology of the system and the provisioning of the different hosts.
This construction is highly customizable, allowing to create hosts ranging from webservers to graphical desktops. Provisioning of
similar subsets of features on different hosts is attained through a template mechanism. MI-LXC currently provides 28 hosts in 11
AS, allowing to simulate BGP routing, DNS, SMTP, HTTP, Certification authorities as well as attacks against these protocols. In this
article, we present the MI-LXC framework, the generated infrastructure and some labs on top of it. MI-LXC is a free software (AGPL).

Additional Key Words and Phrases: Cybersecurity, Cyberrange, Internet simulator, Training platform

ACM Reference Format:
François Lesueur and Camille Noûs. 2021. MI-LXC: A Small-Scale Internet-Like Environment for Network Security Teaching. In The

16th International Conference on Availability, Reliability and Security (ARES 2021), August 17–20, 2021, Vienna, Austria. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3465481.3469181

1 INTRODUCTION

In the cybersecurity area, we need platforms to teach and train people on the complex systems they will have to deal
with. CyberRanges, for instance, are integrated platforms simulating an information system, attackers, some scenario,
etc. During a CyberRange training, participants should collaborate to fight the attacker.

However, because academic teaching requires pedagogic autonomy, we need free (as in freedom) tools to support it
and we should be particularly skeptical when large companies gain some momentum in the education space. Thus,
besides needing specific tools for cybersecurity teaching, we should not pave the way for large corporations to supply
these tools. Yet, today, most CyberRanges are closed-source with strong ties to the defense industry. As such platforms
become mandatory for teaching, we need them to be compatible with the central principles of academic education and
thus must aliment some perspectives for free alternatives.

In this field, we present MI-LXC (Mini-Internet using LXC). MI-LXC allows to programmatically generate a small-scale
internet-like environment running as LXC containers, which can in turn be used for cybersecurity training. The
contribution of MI-LXC is two-fold. First, it is a Python framework to rapidly prototype interconnected information
systems and to interact with these systems using both their commandlines and graphical desktops (Section 3). Second,
it is an instantiation of this framework using JSON and Bash representing a minimalist internet (self-contained BGP,
alternative DNS root, SMTP, HTTP, CA) on which we can practice cybersecurity (28 hosts on 11 AS, see Section 4). It is
lightweight enough to run on students’ laptops, who can thus use it autonomously, and does not come with complex
∗Camille Noûs embodies the collegial nature of our work, as a reminder that science proceeds from disputation and that the building and dissemination of
knowledge are intrinsically selfless, collaborative and open.

Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a
national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so,
for Government purposes only.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

1

https://www.cogitamus.fr/
https://doi.org/10.1145/3465481.3469181

ARES 2021, August 17–20, 2021, Vienna, Austria François Lesueur and Camille Noûs

dependencies (mostly LXC and its python bindings, which are packaged in every major Linux distributions). Learners
can play different roles during a session to understand how these different organizations are interacting (for instance
intrusion scenario, network segmentation, IDS or certification authorities, see Section 5). We strongly believe that
learning cybersecurity requires to understand indirect dependencies and complex interactions, which in turn requires
such self-contained infrastructure that can be customized by both students and teachers (Section 6). We have been
using it with students for 3 years and the current version is stable.

It is worth to be noted that, by itself, MI-LXC is not a cyberrange. Where cyberranges are generally heavy platforms
structured around different scenarios, each scenario being both a specific topology and an associated challenge, MI-LXC
runs on a standard PC to simulate the core internet infrastructure, allowing to study the security of internet and
autonomous systems. It is not tailored towards competition among different teams but rather towards the analysis of
cybersecurity issues in the real internet and the deployment of countermeasures, in a lightweight setup. Yet, MI-LXC
could be used as a substrate for cyberranges to generate some core components of the infrastructure and addresses
some similar teaching needs.

MI-LXC is a free software (AGPL) available at https://github.com/flesueur/mi-lxc.

2 RELATEDWORK

Network classes have long used network simulators for practical work. Among others, we can cite GNS31, Kathara[1],
NSG[4], Mininet[6] or Marionnet2. These tools are well reknowned and robust. They allow to specify, export and
import complex network topologies, as well as to study network-level properties (routing, QoS, etc.). However, being
network-oriented, they do not provide facilities to provision and differentiate the hosts in the network. Mininet, for
instance, starts isolated bash processes to simulate the hosts but does not provide facilities to provision different
filesystems, packages and configurations on these different hosts. They are well-suited to prototype network topologies,
but not to prototype information systems with higher level services.

A set of recent tools uses Docker to isolate the different parts of the system to simulate (Labtainers[5], Seed[3],
Kathara[1], Dockernet3). Docker is quite popular but is centered on the paradigm of one process per container. Rather
than launching an init process, Docker containers run a single application and are then composed using docker-compose.
It should be possible to run an init process in a docker (although there seems to be some incompatibilities with systemd
at least) but it goes against the very basic philosophy of Docker. Thus, complying with the Docker philosophy does not
allow to simulate realistic systems running on classical OS (multiple concurrent users, different processes, allowing an
attacker to pivot). Moreover, these projects concentrate on the framework and some scenarios, but do not propose a
generic internet-like sandbox.

SecGen[8] creates full VMs but is dedicated to CTF-style challenges. It creates voluntarily vulnerable images and
plants flags inside. It is a tool to practice offense with artificial vulnerabilities, where we rather aim at practicing defense
of up-to-date systems.

A few frameworks target the cyberrange usage, such as ADLES[2], Cyris[7], KYPO[9] or EduRange[10]. They
typically focus on heavy virtualization (VMWare Vsphere, KVM, OpenStack, etc.) and thus require a dedicated hosting
infrastructure and are quite complex tools. They are tailored towards the defense of a system with active attackers
(which may be simulated) rather than towards the comprehension of internet interactions.

1https://gns3.com/
2https://marionnet.org
3https://github.com/gmiotto/dockernet

2

https://github.com/flesueur/mi-lxc
https://gns3.com/
https://marionnet.org
https://github.com/gmiotto/dockernet

MI-LXC: A Small-Scale Internet-Like Environment for Network Security Teaching ARES 2021, August 17–20, 2021, Vienna, Austria

There are also, of course, several commercial cyberranges. We cannot ignore them but they are not well publicly
documented. They have two major shortcomings. First, as stated in the introduction, we need free platforms for teaching:
we need to be autonomous on our objectives, to be able to adapt and study a given platform. Second, they usually rely
on some costly hardware, typically several high-grade PC to virtualize the whole infrastructure, and are thus not suited
for students to run on their own laptops.

VM infrastructure building tools, such as Vagrant or Terraform, and provisioning tools, such as Puppet or Ansible,
are of course also in the scope. But in fact, they tackle slightly different problems. Vagrant automates the VM creation
but the biggest work in our case is, in fact, the recipes of VM creation. Vagrant moreover does not support well LXC
(only an unofficial and unmaintained plugin) and mostly targets heavy virtualization such as VirtualBox. Puppet or
Ansible target the provisioning but not the creation process and network topology aspects. In fact, given LXC provides
official Python3 bindings and that generated infrastructures do not have to be maintained in the long time, Vagrant,
Puppet or Ansible do not provide clear benefits. Anyway, most of the work lies in the recipes to configure the different
hosts in the simulated systems.

3 MI-LXC FRAMEWORK

MI-LXC is an infrastructure-as-code framework generating a lightweight internet-like infrastructure which can run on
standard hardware such as students’ laptops. It is written in Python3, generates LXC containers and uses Python-LXC
bindings to interact with these containers. The topology is defined in a few JSON files and the provisionning of
an internet-like environment relies on simple bash scripts. This infrastructure can thus be easily modified, shared,
versionned or updated. In this section, we present how to use the framework to specify an architecture.

3.1 Global topology

First, the global topology is defined in the global.json configuration file. This configuration file lists the different AS
and specifies how they are interconnected. In the following excerpt, there is the definition of the "opendns" AS in the
global.json file. This AS uses the as-bgp template and has 2 network interfaces: one is connected to a transit operator
(transit-a) and one is connected to its LAN (opendns-lan).

1 "opendns": {

2 "templates":[

3 {"template":"as-bgp", "asn":"7", "asdev ":" eth1",

4 "neighbors4":" 100.64.0.1 as 30",

5 "neighbors6":"2001: db8:b000 ::1 as 30",

6 "interfaces":[

7 {"bridge":"transit -a", "ipv4 ":"100.64.0.30/24" , "ipv6 ":"2001: db8:b000 ::30/48"} ,

8 {"bridge":"opendns -lan", "ipv4 ":"100.100.100.1/24" , "ipv6 ":"2001: db8:a100 ::1/48"}

9]

10 }

11]

12 }

3

ARES 2021, August 17–20, 2021, Vienna, Austria François Lesueur and Camille Noûs

3.2 Local topology

Second, for each AS, a groups/<asname>/local.json configuration file describes its local topology. The local.json
lists the internal hosts and how they are interconnected. The interconnections as well as the internal configurations can
be modified during a lab, for example to study how to segment an information system. Here, we can see the definition
of the "sales" host in a local.json file. This host is plugged on the <asname>-lan bridge, receives some IP addresses
and configures four templates: it is a SSHFS client, an LDAP client, a graphical mail client and does not use DHCP.

1 "commercial": {

2 "container":"sales",

3 "interfaces":[{"bridge":"lan", "ipv4 ":"100.80.0.2/16" , "ipv6 ":"2001: db8 :80::0:2/48"}

4],

5 "gatewayv4":" 100.80.0.1" ,

6 "gatewayv6":"2001: db8 :80::0:1" ,

7 "templates":[

8 {"template":"sshfs", "server ":" filer"},

9 {"template":" ldapclient", "domain ":" target.milxc", "server ":" ldap"},

10 {"template":" mailclient", "domain ":" target.milxc", "mailname ":" sales",

11 "password":"sales",

12 "login":"sales"},

13 {"template":" nodhcp", "domain ":" target.milxc", "ns ":"100.80.0.1"}

14]

15 }

3.3 Provisioning

Third, for each host, a simple bash script is used to provision it. For instance, this part of a provisioning script configures
a DNS zone and adds a custom script to the host.

1 # disable systemd -resolved which conflicts with nsd

2 echo "DNSStubListener=no">>/etc/systemd/resolved.conf

3 systemctl stop systemd -resolved

4

5 # manage gozilla.milxc zone

6 apt -get update

7 DEBIAN_FRONTEND=noninteractive apt -get install -y unbound

8 cp dns.conf /etc/unbound/unbound.conf.d/

9

10 # Script to add a cert to the CA/Browser consortium

11 cp addcatofox.sh /usr/local/bin

12 chmod a+x /usr/local/bin/addcatofox.sh

4

MI-LXC: A Small-Scale Internet-Like Environment for Network Security Teaching ARES 2021, August 17–20, 2021, Vienna, Austria

3.4 Masters

Fourth, each host derives from a master image. Master images are listed in the global.json file and are provisioned
exactly like hosts. We currently propose two masters: a Debian Buster for general-purpose hosts and an Alpine Linux
for BGP routers.

3.5 Templates

Finally, hosts can use some templates, which allow to factorize redundant aspects. Templates are mostly bash scripts
which look like provisioning scripts, except that they propose variables which are substituted by the supplied parameters.
We currently propose templates for BGP routers, LDAP clients, mail clients, mail servers, nameservers or SSHFS clients.
The following example allows to mount SSHFS network fileshares hosted on $server.

1 apt -get update

2 DEBIAN_FRONTEND=noninteractive apt -get install -y sshfs libpam -mount hxtools

3

4 echo -e "#!/bin/bash\nmknod -m 666 /dev/fuse c 10 229\ nexit 0" > /etc/rc.local

5 chmod +x /etc/rc.local

6 echo "user_allow_other" >> /etc/fuse.conf

7 cp pam_mount.conf.xml /etc/security/

8 sed -i -e "s/\ $server/$server/" /etc/security/pam_mount.conf.xml

Figure 1 illustrates running containers providing both command-line and X11 access.

Fig. 1. Screenshot of the desktop of the hosting machine, showing both command-line and X11 access to simulated hosts: on the left,
there is the graphical desktop of some simulated host running a mail client; on the top, there is another graphical desktop of some
other simulated host; on the bottom-right, there is a command-line access on a simulated firewall.

5

ARES 2021, August 17–20, 2021, Vienna, Austria François Lesueur and Camille Noûs

4 MI-LXC TOPOLOGY

The currently running topology is illustrated on Figure 2. It consists in 28 hosts in 11 AS:

• The core network is represented by the two transit operators transit-a and transit-b. Transit-a also routes the
whole infrastructure to the real internet through the LXC bridge on the host machine

• The .milxc TLD, used for internal domains (for instance target.milxc), is managed by the milxc AS
• Two alternative DNS roots, which allow to resolve the .milxc TLD as well as the real TLDs, are hosted on root-o

and root-p

• An open DNS resolver is provided by opendns

• The commercial ISP isp-a provides internet access to several clients, who may be honest or malicious
• The certification authority mica uses the ACME protocol (like Let’s Encrypt) to deliver HTTPS certificates
• The gozilla browser editor provides a web-browser which may accept new certificates roots
• The target enterprise hosts an organization system with SMTP, HTTP, DNS, LDAP, filer, intranet and desktop
clients. It is voluntarily in a flat, unsecured network architecture

• The ecorp enterprise allows to run BGP attacks

The aim of this topology is to reproduce core internet concepts, such as BGP routing or open protocols (DNS, SMTP,
HTTP). It is an insecure internet (as a large part of the real internet is), since the aim is to analyze these threats and to
learn how to deploy security measures.

Fig. 2. Currently implemented topology. Ovals are network bridges and rectangles are hosts.

6

MI-LXC: A Small-Scale Internet-Like Environment for Network Security Teaching ARES 2021, August 17–20, 2021, Vienna, Austria

5 TRAINING EXAMPLES

In this section, we describe the 4 lessons of practical work (4 hours each) we propose with MI-LXC: an intrusion scenario,
a network segmentation (firewall), an IDS deployment and the HTTPS securitymodel with a global certification authority.
The pedagogic material of these 4 lessons is available on the Github page (in French). We also introduce how MI-LXC
can be used for students’ projects.

5.1 Intrusion Scenario

Intrusion scenario, network segmentation and IDS deployment belong to the same course. This intrusion scenario
allows to apprehend the type of tools an attacker may use, how a multi-step attack may be performed, what is pivoting
and how we could defend from that.

The attacker is external and runs everything from isp-a-hacker. Her aim is to steal and delete confidential information
hosted on an internal server of the target corporation. The proposed attack can follow this plan:

• A wiki is hosted on target-dmz and is accessible from the outside. The attacker can brute-force an administrative
account, upload a trojan with a reverse shell and add a page to explain this is a security update.

• The attacker can then send a spoofed email to an internal employee, masquerading as an admin, asking him
to follow the security update process. This process being described on a local server (on the forged wiki page),
the employee has many reasons to trust it. These two first steps illustrate social engineering and students have
many ideas on this topic !

• When the employee follows the process, he in fact launches a reverse-shell with the attacker on the other side.
• The attacker can then transfer nmap and scan the internal network with it. At this point, students have to map
the whole network: hosts, listening softwares, banners, versions, . . .

• An internal web server clearly hosts some sensitive content
• The employee can connect to this serverwith SSH, but the attacker needs to get this employee’s password. Students
can either choose to install a keylogger or use LaZagne, which is a tool digging into software configuration
to find configured accounts. In this case, LaZagne can find the password of the mail account in the ClawsMail
configuration.

• The attacker can then connect to the internal web server using SSH and the newly discovered password. She can
find sensitive files there.

• There is another attack path, through the machine of a developer whose code is continuously deployed to this
web server and can then lead to a continuous delivery attack.

5.2 Network Segmentation

This lesson is ran from the target-admin host to configure the firewall on target-router. First part is to gain some
knowledge on iptables/nftables using simple examples. Then, having understood what can be filtered, the possible
attack paths and the organization of the information system, students propose a network flow matrix. This intermediate
step allows to discuss their choices until they provide a sound proposition. Finally, they can implement this matrix by
adding some network interfaces and bridges, updating the network configuration in MI-LXC and configuring iptables
on target-router.

After this session, students obtain a network where functional zones are clearly isolated and lateral movement are
constrained. The employee who was compromised during the intrusion, for instance, cannot access the whole network

7

ARES 2021, August 17–20, 2021, Vienna, Austria François Lesueur and Camille Noûs

anymore. Only expected flows are remaining and these flows will be monitored using an IDS during the following
lesson.

5.3 IDS

During this lesson, students deploy an HIDS, a NIDS as well as some concentration and correlation tools. We mainly use
OSSEC, Suricata, Prelude and Prewikka but some other choices are possible. Students first propose the artefacts they
should observe and then elaborate signatures or process to detect them. They can for instance detect the brute-force
(OSSEC or Suricata), appearance of new files (the uploaded trojan, with OSSEC), opening of the reverse-shell (Suricata),
alteration of sensitive files (OSSEC), . . .

This work allows to evaluate the possible control points, their soundness, but also how easy it is to evade such
controls. Starting from that, we plan to propose something further, around NSM or threat intelligence and collaboration
among different organizations.

5.4 Certification Authorities

This lesson is isolated from the precedent ones and is done in another course. During this lesson, students practice and
understand the HTTPS security model with a global certification authority such as Let’s Encrypt. The objective is to
allow someone on isp-a-home to securely connect to https://www.target.milxc which is hosted on target-dmz.

First, students use a simple HTTP connection and attack it, using a DNS attack (zone modification) or BGP hijack
(using the dedicated rogue AS ecorp): they thus can see the MitM problem we want to solve. Then, they create the
CA on mica-ca using the SmallStep toolsuite: these tools provide an easy-to-use CA (no more openssl configuration)
compatible with the ACME protocol (the automated challenges from Let’s Encrypt). They can then ask for a certificate
from target-dmz and configure their webserver. Then, to make it a global CA, MICA needs to be accepted by the
browsers’ editors, as in real life with the CA/Browser forum (we do not simulate a local CA but a global CA, to analyze
the security model of HTTPS through internet). This part is simulated with Gozilla, an internal browser editor, which
can accept this new CA and will then provide an updated browser to isp-a-home, with a new CA root in its trust store.
The user can finally connect securely to https://www.target.milxc, without any warning. Finally, students examine
what can happen if an attacker attacks this connection (there is a security error) or attacks the verification process by
the CA (there is a wrongly emitted certificate). We conclude with some Certificate Transparency remarks.

5.5 Students’ Projects

Besides these practical work, MI-LXC can act as a substrate for students’ projects. Since MI-LXC runs directly on their
own laptop rather than in the cloud. they can rapidly prototype some interconnected systems without any external
registration or synchronization. They benefit from the framework and from the already deployed infrastructure. For
instance, some students used it to centralize logs in an ELK stack or to explore how to assess a continuous improvement
methodology of the security monitoring.

6 USAGE

In this section, we describe how MI-LXC is used by students for practical work, by students for projects and by teachers
for preparing specific infrastructures.

8

https://www.target.milxc
https://www.target.milxc

MI-LXC: A Small-Scale Internet-Like Environment for Network Security Teaching ARES 2021, August 17–20, 2021, Vienna, Austria

6.1 By students for practical work

Students run MI-LXC autonomously on their laptops. It can be installed in two different ways. First, there is an
installation procedure on Linux, with a few dependencies (mostly LXC and its python bindings). Second, there is also a
VirtualBox VMwhich can run on any OS ; this VM is created using Vagrant (the script is available in the code repository)
and is directly downloadable. This allows a smooth bootstrap of the practical work.

Whether using the installation on Linux or the VM, next steps are similar. Once the infrastructure is created with
'./mi-lxc.py create' (already done in the VM, requires 10-20 minutes depending on CPU, storage speed and network
bandwidth), students start the system with './mi-lxc.py start'. Then, they mostly use three commands:

• './mi-lxc.py print' prints the current topology (as in Figure 2);
• './mi-lxc.py attach target-dmz' opens a root shell on the target-dmz host;
• './mi-lxc.py display isp-a-home' opens a graphical desktop on the isp-a-home host.

6.2 By students for projects

When students develop cybersecurity projects with MI-LXC, they need to modify the infrastructure. Typically, they
would first add some hosts or change the interconnections. For that, they need to edit JSON files (local.json of the
relevant AS) to describe the aimed topology. Second, they would modify some other hosts. For that, they need to edit
provisioning scripts (relevant provision.sh) to suit their needs. Finally, to update the running infrastructure, they
need to recreate the containers. They can either destroy all containers or destroy only specific containers (useful during
the development), and then create them again. The two commands are:

• './mi-lxc.py destroy target-dmz' to destroy only the target-dmz host;
• './mi-lxc.py create' to create all needed hosts.

They can also directly configure the hosts when running MI-LXC since changes are permanent across reboots.

6.3 By teachers

Teachers can either reuse the provided MI-LXC infrastructure as is or provide a customized VM to their students. To
provide a customized VM, they would add and edit hosts similarly as in the previous subsection. Finally, when everything
is ready, they can create a VM using this precise deployment with 'vagrant up' (in the vagrant/ subdirectory). This
will create and bootstrap a clean VirtualBox VM which can be tested and then exported as an OVA (which the student
can import into their own VirtualBox).

7 CONCLUSION

MI-LXC allows to specify, program and deploy virtual infrastructures for cybersecurity training. It allows to run a
simulated internet-like environment currently consisting of 28 hosts in 11 AS. This MI-LXC topology runs smoothly
with 2GB of RAM and 6GB of disk (when installed directly on a Linux host, we also provide a ready-to-run VM needing
13GB of disk). We currently use it for several practical works: intrusion, network segmentation, IDS and certification
authorities for HTTPS. The whole project consists of around 1000 lines of Python, 1000 lines of Bash and 300 lines of
JSON, which makes it quite maintainable and easy to understand.

In the future, we expect some improvements as well as some new usages. First, we experimented some remote
access control to the infrastructure on the students’ laptops, using a VPN and X2GO. This yielded interesting results in
the case of remote teaching we should develop. Then, we should investigate adding some background activity in the

9

ARES 2021, August 17–20, 2021, Vienna, Austria François Lesueur and Camille Noûs

infrastructure, to simulate honest as well as malicious users and provide some background noise. Finally, we are also
interested in adding other practical works, to teach NSM, hunting, collaborative threat intelligence or incident response.

REFERENCES
[1] G. Bonofiglio, V. Iovinella, G. Lospoto, and G. Di Battista. 2018. Kathará: A container-based framework for implementing network function

virtualization and software defined networks. In NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. 1–9. https:
//doi.org/10.1109/NOMS.2018.8406267

[2] Daniel Conte de Leon, Christopher E. Goes, Michael A. Haney, and Axel W. Krings. 2018. ADLES: Specifying, deploying, and sharing hands-on
cyber-exercises. Computers & Security 74 (2018), 12–40. https://doi.org/10.1016/j.cose.2017.12.007

[3] Wenliang Du. 2011. SEED: hands-on lab exercises for computer security education. IEEE Security & Privacy 9, 5 (2011), 70–73.
[4] Thomas Holterbach, Tobias Bühler, Tino Rellstab, and Laurent Vanbever. 2020. An Open Platform to Teach How the Internet Practically Works.

SIGCOMM Comput. Commun. Rev. (2020). https://doi.org/10.1145/3402413.3402420
[5] Cynthia E Irvine, Michael F Thompson, Michael McCarrin, and Jean Khosalim. 2017. Labtainers: a Docker-based framework for cybersecurity labs.

In Proc. 2017 USENIX Workshop on Advances in Security Education.
[6] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A network in a laptop: rapid prototyping for software-defined networks. In Proceedings of the

9th ACM SIGCOMMWorkshop on Hot Topics in Networks. 1–6.
[7] Cuong Pham, Dat Tang, Ken-ichi Chinen, and Razvan Beuran. 2016. CyRIS: a cyber range instantiation system for facilitating security training. In

Proceedings of the Seventh Symposium on Information and Communication Technology. 251–258.
[8] Z Cliffe Schreuders, Thomas Shaw, Mohammad Shan-A-Khuda, Gajendra Ravichandran, Jason Keighley, and Mihai Ordean. 2017. Security Scenario

Generator (SecGen): A Framework for Generating Randomly Vulnerable Rich-scenario VMs for Learning Computer Security and Hosting {CTF}
Events. In 2017 {USENIX} Workshop on Advances in Security Education ({ASE} 17).

[9] Jan Vykopal, Radek Ošlejšek, Pavel Čeleda, Martin Vizvary, and Daniel Tovarňák. 2017. Kypo cyber range: Design and use cases. (2017).
[10] Richard Weiss, Franklyn Turbak, Jens Mache, and Michael E Locasto. 2017. Cybersecurity education and assessment in EDURange. IEEE Annals of

the History of Computing 15, 03 (2017), 90–95.

10

https://doi.org/10.1109/NOMS.2018.8406267
https://doi.org/10.1109/NOMS.2018.8406267
https://doi.org/10.1016/j.cose.2017.12.007
https://doi.org/10.1145/3402413.3402420

	Abstract
	1 Introduction
	2 Related work
	3 MI-LXC Framework
	3.1 Global topology
	3.2 Local topology
	3.3 Provisioning
	3.4 Masters
	3.5 Templates

	4 MI-LXC Topology
	5 Training Examples
	5.1 Intrusion Scenario
	5.2 Network Segmentation
	5.3 IDS
	5.4 Certification Authorities
	5.5 Students' Projects

	6 Usage
	6.1 By students for practical work
	6.2 By students for projects
	6.3 By teachers

	7 Conclusion
	References

