
Palpable Privacy through Declarative Information
Flows Tracking for Smart Buildings

François Lesueur∗, Sabina Surdu∗, Romuald Thion†, Yann Gripay∗ and Meriam Ben Ghorbel-Talbi∗
∗INSA-Lyon, CNRS, LIRIS, UMR5205, F-69621 France

†Université Lyon 1, CNRS, LIRIS, UMR5205, F-69622 France
Email: {firstname.lastname}@liris.cnrs.fr

Abstract—Smart buildings are more and more com-
mon due to recent technological advances. They
promise to improve users’ lives, but they are packed
with sensors that gather user related data, fueling ever
increasing privacy infringement suspicions. Captured
data usually takes the form of dynamic streams, hence
such buildings can naturally be programmed using
Data Stream Management Systems (DSMSs) that exe-
cute long-running queries on data flowing from sensors.
In this paper we address the problem of the dissemi-
nation control of private data, encountered in smart
buildings. We introduce Tuple-Based Access Control
(TBAC), a novel access control model that tracks
sensor information flows in a DSMS. We provide users
with the ability to enforce easy-to-understand, intuitive
security policies on sensor-produced data. When such
data are combined by queries in the system, so are
their security policies, hence data access control is
disseminated throughout the system. We argue that
such a model is mandatory to ease the acceptance
of smart buildings. Nevertheless, TBAC can also be
relevant to other scenarios involving dissemination of
aggregable private data.

I. Introduction
Smart buildings are more and more common due to

recent advances in sensor networks, data gathering and
data analysis technology. They promise to improve users’
lives, offering comfort, greenness, and a string of innovative
features like regulating heating and cooling in an efficient
way, while automatically adapting to users’ needs. But
all this smartness comes with a price. Such buildings are
packed with arrays of sensors and actuators, which pose
as many threats to user privacy. Therefore, people are
often reluctant to smart buildings, fearing being spied
by their boss or colleagues, since gathered and observed
data are personal (e.g., door opening, time of arrival). To
allay security and privacy fears, these data need to be
firmly protected. To this end, we aim at giving users the
control over how data that concerns them can be accessed
by other actors in the system. We want to provide users
with the ability to enforce easy-to-understand, intuitive
security properties on data, which propagate throughout
the system. We believe that security and privacy are
mandatory for the development of smart buildings.

Smart buildings contain sensors that provide data
streams and actuators that offer invokable functionalities.

A smart building may for instance provide the following
sensors for every office: door opening, room presence, light
level, temperature; and the following actuators: heating,
cooling, light and shutter switches. All sensor data can be
collected by a server which, in turn, commands actuators
according to its program. The following actions can be
triggered by flowing data or at specified time instants:
on room presence, if the light level is below a certain
threshold, switch the light bulb on; on room presence,
activate the heating system to 21◦C, on absence, set it
to 19◦C; at the end of each week, send the sum of the
presence hours to supervisors. In this scenario, the smart
building can improve user comfort (automatic actions),
reduce the carbon footprint of the company (switching
unneeded cooling systems) or ease management (presence
hours of employees). However, such setup naturally worries
employees about their privacy. Without privacy protec-
tion, people with access to the system can obtain precise
working habits, break intervals or arrival times which can
lead to unacceptable intrusion into users’ lives. Actually,
supervisors only need data aggregated at a weekly gran-
ularity to check worked hours and not the precise arrival
or departure times.
To this aim, the contribution of this paper is Tuple-

Based Access Control (TBAC), a novel access control
model that tracks information flows among data streams.
TBAC tackles some of the privacy issues encountered
in smart buildings, i.e., the dissemination control of pri-
vate data. With respect to alternative approaches, TBAC
presents two innovative features. First, users only need to
express access rights over sensors targeting them, choose
at which time/space granularity these data can be de-
classified and authorize different granularities to different
readers, hence TBAC provides a sense of tangible security
to users, which is critical in smart buildings. Second,
access rights are associated to data following the sticky
policy paradigm, propagated and combined throughout
the system to guarantee that declassification of combined
data respects every original rule set on sensor-produced
data. Both the dissemination control offered by the TBAC
model and its tangible aspect can lead to a better accep-
tance of these buildings, while not strictly limited to this
scenario: more generally, dissemination of aggregatable
private data or e-health are envisioned.



In this contribution, TBAC is integrated into the SoCQ
system [1] which is a Service-Oriented Data Stream Man-
agement Systems (DSMSs), improved DBMSs that can ex-
ecute continuous queries on dynamic data streams. SoCQ
transparently interacts with streams and functionalities,
by hiding imperative code behind declarative interfaces in
an SQL-like language. The SoCQ system has been used in
[2] to program a scenario very similar to smart buildings,
encompassing sensors and actuators and thus it is chosen
as an enabling technology in this paper (Section III).

In Section II, we discuss the related work dealing with
privacy in smart building and dissemination control. Then,
in Section III, we describe how to program a smart build-
ing using a declarative approach with the SoCQ DSMS.
In Section IV, we present the TBAC model and we show
how to integrate it into the SoCQ system. In Section V, we
describe a policy administration GUI to show how users
can specify their privacy policy. Finally, in Section VI, we
propose some future work.

In this paper, we make the following assumptions. First,
the DataBase Admin is trusted (the DBA problem is
orthogonal). Then, data are currently stored in a trusted
server without cryptographic protection (future improve-
ment).

II. Related Work
Since we propose to use flow control to protect privacy

in smart buildings, we first describe related work on
privacy in smart buildings and we then discuss previous
propositions on generic-purpose flow control.

A. Privacy in Smart Buildings
The privacy issues have been widely investigated in

the literature and many obfuscation strategies have been
proposed in order to keep personal informations confiden-
tial and to prevent from malicious invasion of privacy.
As we stated previously, smart buildings are designed to
exploit personal informations to give personalized services
to users. Moreover, users do want to disclose some of
their personal information to better collaborate with their
colleagues. Hence, a balance between privacy and utility
must be preserved and it is mandatory to provide means
to users to specify their own privacy policy. We discuss in
the following related work on the privacy issue in smart
environments.

In [3] authors propose an access control mechanism for
the Solar system, an event-based context distribution in-
frastructure. The proposed approach is based on a conser-
vative information-flow model where end-users can express
discretionary relaxation of the resulting Access Control
List (ACL). Each event is tagged with an ACL derived
automatically from the ACL on events that contributed
to its production. However, to release constraints on a
data inside the system, users need to express exactly on
which operator in the system this declassification happens
and thus need a global view and understanding of the

global workflow, which seems hard to require from end-
users. Moreover, although controlled by the end-user, this
declassification is prone to information leakage if the user
does not fully understand all the private data which can
arrive at this point. This is contrary to our current work
where users only need to specify properties to be validated
on original streams and do not need any insight on the
global workflow.
In [4] authors present a policy language based on the

metaphor of physical walls, called virtual walls, using the
Solar system as sensing infrastructure. They introduce the
concept of personal footprints, a various classes of events
containing details about users’ activities, the timestamp
and the set of sensors where the footprint originates. End-
users are allowed to regulate access to their personal foot-
prints by specifying virtual walls around a given place, e.g.
a room or a building’s floor. Each virtual wall applies to
a set of users and has transparency (transparent, translu-
cent and opaque). Here authors focus on how users can
specify their privacy requirements and how to help them
to understand it, by giving an intuitive policy abstraction,
like for instance the circle metaphor in the Google+ social
network. The TBAC model is at a lower abstraction level,
thus the virtual walls approach may be used to simplify
the specification of large policies by providing an intuitive
metaphor on top of TBAC.
Confab [5] provides a framework for ubiquitous com-

puting applications, where personal informations are cap-
tured, stored and processed on the end-user’s computer
as infospaces. Tuples are used to represent users contexts,
that can be static, as name and email, or dynamic, as
location and activity. Each tuple can have a privacy tag
which describes the end-user’s privacy preferences. These
tag can specify TimeToLive, i.e. how long data should
be retained; MaxNumSightings, i.e. the maximum num-
ber of previous values that should be retained; Notify,
i.e. an address to send notifications of second use to;
GarbageCollect, i.e. additional hints on when the data
should be deleted. Privacy preferences are specified by
end-users when a client application makes a request to
an infospace. These preferences are then stored and used
later for the associated service. This work is similar to
ours in the sense that they allow users to specify their
own privacy policy and stick this policy with users data to
enforce it. However, they do not focus on the combination
and aggregation problems, which are at the center of our
work.
In this paper, we explore a new access control model

using a declarative DSMS framework to program smart
buildings. In fact, tracking information flows in a declar-
ative program offers different possibilities, compared to
the previously cited papers which are all using imperative
programs. First, the higher level semantics of declarative
operators allows a better understanding of programs which
tend to be more concise and clearer. Then, declarative
programming is intensively used by developers today, e.g.,

2



the prominence of SQL in DBMS, so we merely tailor our
approach to fit current development usages. The database
layer has also shown over the years to be a good abstrac-
tion for security features.
B. Flow Control in DSMS

Lattice-Based or Mandatory Access Control, generaliz-
ing the confidentiality model from Bell and LaPadula [6],
can be used to control information flows in a DSMS. Each
data has a label, combining data creates new data with
a more restricted label and users can only access data
with a label equal or inferior to their clearance level. Such
models guarantee that information cannot be accessed by
users who had no access to original data. However, they
are too restrictive in our context as, for instance, a mean
of a set of temperatures would be labeled as confidential
as soon as one, possibly in one thousand, is confidential.
Rendering these systems more usable requires declassifica-
tion: a highly privileged process can downgrade the label
of some composite data to make them more accessible,
e.g., to set the mean temperature as public. However,
declassification is executed on composite data with no
history on contributing data, yielding potential errors and
unexpected information leakage. Moreover, data creators
cannot control this process, what data it declassifies and
how.

Dissemination Control (also called Originator Control)
models [7] tackle uncontrolled declassification. Users at-
tach security policies to the data they produce. The dis-
semination of these data must obey expressed constraints,
while still providing some guarantees on information flows.
These constraints may express a path of dissemination,
some intermediary controls, etc. For instance, [8] proposes
a Policy, Enforcement, Implementation model for secure
information sharing. This paper encompasses a wide area
from policy to user authentication and thus only provides
a bird eye’s view on the topic of declassification. The
combination and aggregation problems, which are at the
center of our work, are however not addressed.

In [9] authors propose a stream-centric approach where
security restrictions are streamed together with the data,
as Security Punctuations (SPs). SPs are meta-data that
specify who has access rights to which streaming data.
These meta-data are specified by end-users and then
combined by the DSMS server with the server-side policies
in order to allow organizations to enforce their own poli-
cies. To address the combination and aggregation issues,
authors propose to extend stream algebra to become
security-aware. Authors advocate their proposition as an
access control enforcement mechanism rather than a new
control model, hence our TBAC model is complementary
and may in fact be implemented using SPs.

III. Enabling Technology: Declarative Smart
Building

The SoCQ system is a DSMS that provides a relational
abstraction and a SQL-like query language on top of

distributed services and can be used in a smart building
environment. We briefly describe this enabling technology
which is the underlying block on which we add dissemina-
tion control mechanism to provide a privacy-aware smart
buildings infrastructure. Note that an other declarative
DSMS might be used as well.
For each type of sensor, a relational table is created.

This table is tightened to sensors and actuators through
binding patterns, which link declarative statements to
imperative code and protocol. The content of the table is
a structured stream of data tuples from sensors and SoCQ
can then execute SQL-like queries on sensor data. For each
type of actuator, a table is also created. In a symmetric
way, binding patterns link tuples inserted by the DSMS
into this relation to imperative code and protocol. Tuple
insertions trigger imperative code which can, in turn,
activate actuators. Imperative code is minimalistic in our
scenario, doing very simple tasks. All the computation and
combination of information flows is done inside SoCQ, at
the declarative level.
The SoCQ system is used in the SoCQ4Home project1, a

smart building management project. An experimentation
platform is installed in the authors’ building at LyonTech
Campus in France : 50 wireless sensors (temperature, CO2,
humidity, luminosity, presence, doors) are deployed in
about 20 rooms (offices, common room, teaching rooms).
The smart building program is implemented through
SoCQ continuous queries that subscribe to streams (e.g.,
temperature streams from sensors), manipulate data, or
invoke actuator functionalities (e.g., activate heater).
The global workflow is illustrated in Figure 1, where

the so named CS smart building contains presence and
temperature sensors, and temperature heater actuators.
A background continuous query CQ1 monitors tuples from
presence sensors streams and, based on presence (ON) or
absence (OFF), sets the temperature of the corresponding
area accordingly, through a temperature heater actuator.
Moreover, data from the system can also be queried by

a Building Manager (BM) who wants to see aggregated
temperatures based on temporal and spatial criteria (e.g.,
query CQ2). In this query, the BM should not have access
to data in red rows, i.e., data that are privacy invasive,
but only to aggregated data. For instance, the BM cannot
access a row that gives the average temperature for one
office on a per-minute basis as being too specific. By
contrast, if either the area or the time interval increases,
the data are no sensitive anymore, so the BM can access
them. In our proposition, this access decision is entirely
controlled by the users to whom sensors relate.

IV. Tuple-Based Access Control
In this section, we present the TBAC model on top

of the SoCQ system. Our approach is based on policies
expressed on sensors and on subsequent combinations of

1http://liris.cnrs.fr/socq4home/

3



…"(ts2,12:04h
,23,"Office"Z)"…"

…"(ps3,12:02h,Off,"Office"Z)"…""

Temperature 
Sensor2

Presence 
Sensor3

Temperature 
Sensor1 …"(ts1,12:03h,17,"Office"X)"…"

…"(ps1,12:05h,ON,"Office"X)"…"

…"(ps2,12:07h,OFF,"Office"Y)"…."
"

Hea$ngActuatorSetpoints1

Presence'

BM’s%CQ%2%

Temperatures*

Background+CQ+1+

Sensor' Period' Loca.on' Avg'temp'

ts1$ 1$ Office$X$ 16$

ts1' 3600' Office'X' 22'

ts1' 1' Floor'1' 15'

…' …' …' …'

Agg#temperatures#

X"
!!
!!BM#

SoCQ%

CS#smart#building#

Temperature 
Heater2

Temperature 
Heater1

Presence 
Sensor1

Presence 
Sensor2

Hea$ngActuator- Loca$on- Setpoint-

th1- Office-X- 21-

th2- Office-Z- 19-

…- …- …-

Sensor' TS' Presence' Loca-on'

ps3' 12:02' OFF' Office'Z'

ps1' 12:05' ON' Office'X'

ps2' 12:07' OFF' Office'Y'

…' …' …' …'

Sensor' TS' Value' Loca/on'

ts1' 12:03' 17' Office'X'

ts2' 12:04' 23' Office'Z'

…' …' …' …'

Fig. 1. Global workflow

policies throughout the SOCQ system. First, users tag the
sensors they are authoritative for with a security policy,
named s-tags, defining who has access to data produced
by these sensors and at which aggregation level. Second,
the output data stream of a sensor is duplicated at each
aggregation level and the resulting tuples are tagged with
the sensor’s set of authorized user. Third, when tuples
are combined by SoCQ queries in order to provide smart
features, their authorized users are combined to tag the
output. Finally, when a user like the BM tries to access
some data, she obtains the result only if she satisfies all
the policies stated by original users.

A. Security Policies
In smart-metering in particular, a privacy-aware secu-

rity policy should ensure users cannot execute queries that
are too intrusive, based on spatial or temporal criteria.
E.g., in the motivating scenario, one does not want the
BM to access their precise arrival and departure time, but
only office spent time on a weekly basis. Likewise, BMs
should be prevented from deducing when an employee is
present based on temperatures variations (door opening,
etc). Instead, BMs may only obtain values aggregated on
space or time.

The key ingredient of these requirements is the granu-
larity of the aggregation operators on spatial and temporal
dimensions. The set K of all s-tags is defined as a set of
atomic policies, each one defines a minimum granularity
at which a data must be aggregated before disclosure.
We note by T the lattice of time aggregation levels, S
the lattice of space aggregation levels, OP the required

aggregation operations (e.g., min, max, average, median,
count) and U the set of users. The definition of T and
S as lattices is standard in multidimensional dataware-
houses to build the lattice of all possible aggregation
levels, named lattice of cuboids. For instance the triple
(week, office, avg) ∈ T × S ×Op allows the use of the sen-
sor’s data by queries that are coarser than a weekly report
on offices’ temperatures. We note by P the powerset, by +
the disjoint union and by ⊥ a special element that captures
the lack of any constraint and we formally define K:

K = P(({⊥}+ T × S ×OP )× P(U))

For example, consider the s-tag k = {k0, k1}
constructed from two atomic policies k0 =
((week, office, avg), {BM, BMa}) and k1 = (⊥, {Alice}).
This policy is attached to the Temperature Sensor 1
(TS1). This s-tag states that the building manager BM
and his/her adjoint BMa are authorized to query the
stream only for a weekly report. However, the user named
Alice can compute everything using data emitted by TS1
without constraints.

When a SoCQ query is executed, for instance computing
the weekly temperature report (CQ2), it consumes input
streams, combines them and produces an output stream
whose data must be tagged according to the inputs’ s-
tags. Security policies are thus propagated throughout the
system.

B. Aggregations of sensor streams
With the proposed security policies, access to composite

data should be granted only if those data have been

4



Fig. 2. TBAC-SoCQ Graphical User Interface

aggregated according to all the policies set on original
data. However, being able to ask for aggregation queries on
raw tuples could lead to information leakage; Consider the
following scenario. Alice, in the CS building of Figure 1,
tags her temperature sensor TS1 with the k policy. Inside
the SoCQ system, a table Temperatures off all rooms in
the building is generated. The BM could then directly
query Temperatures, containing only current tempera-
tures, for an average over 7 days of Alice’s data. Since
there is only one value in the table to average, which
is the current temperature in Alice’s office, the average
would be this precise value, which should not be obtained
by the BM. However, the system would validate the fact
that data has been averaged over 7 days, since the query
required this average, and send the data to the BM. While
we could imagine some metrics based on k-anonymity, l-
diversity, t-closeness or differential privacy, we propose an
alternative and complementary solution.

For each sensor stream entering the system, we duplicate
it according to the aggregation levels specified in its s-tags.
E.g., for sensor TS1, tagged with k = {k0, k1}, two streams
are fed into the SoCQ system: TS1_Alice, the raw stream
authorized to Alice by k1, and TS1_week_room_avg, the
stream averaged over a week on a room basis, authorized to
BM and BMa by k0. This duplication can be done auto-
matically by enumerating the constraints in the expressed
security policies and then naming the stream in a canonical
way. Such views on streams are a logical definition that
will be executed only when needed and not materialized
systematically. The idea of defining a set of views, one
for each aggregation level, and choosing the right one
at execution time is well studied in the field of data
warehouse and multidimensional analysis. The duplicated
views are those whose aggregation levels are coarser than
required, e.g., with k0, the views with aggregation at week
or building levels are authorized.

Finally, data tuples stored in the system are only tagged
with the set of users allowed to read them, instead of
an element of K. For instance, all tuples in TS1_Alice
are tagged with the singleton {Alice} and those in
TS1_week_room_avg are tagged with {BM, BMa}. This
construction ensures that security policies expressed by
users are enforced. The price to pay is denying access to
data which could be allowed by the user, but we argue this
is a reasonable trade-off between accuracy and privacy.

C. Combination Operators
We need operators to define how to combine set of users.

As it is done in the relational model with provenance [10],
each SoCQ relational operation has to define how allowed
users are combined. One of the remarkable result of the
provenance framework of [10] is that only two operators
⊗ and ⊕ are needed to combine meta-data associated to
tuples when base tuples are combined by means of the
relational algebra.
Basic SoCQ operations from relational algebra are Se-

lect, Project, Join, Rename and Union. Select and Rename
are transparent as they do not alter the set of authorized
users: renaming rows or picking a subset of data in a
stream do not alter tuples. Project and Union can merge
several original tuples into the same one. Its set is the
union of allowed users on original data: access to the
composite tuple requires access to either of the original
ones, formally, x ⊕ y = x ∪ y. Join combines two original
tuples into a composite one, whose set of authorized users
is the intersection of allowed users on original data: access
to the composite tuple requires access to both original ones,
formally, x⊗ y = x ∩ y.

D. Access Control Filter
The access control filter has to trap every access attempt

and to filter whether the request is authorized by the

5



security policy. In our setting, requests are SoCQ queries
that are either ran in the background to trigger actuators
or submitted by users. Access must be filtered in both
cases.

For instance, a tuple tagged with {Alice, Bob} is al-
lowed to be read by both Alice and Bob. This situation
corresponds to the case where the tuple can be obtained
in different ways, for instance if TS1 and TS2 are two
sensors in different offices X and Y allowed to be accessed
by Alice and Bob respectively. If both offices are quite
warm, both Alice and Bob can read the positive answer
to the query “is there any office with temperature higher
than 21 °C?”. There is only one value, namely true, tagged
with {Alice, Bob}. However, if the query is “what are the
offices with temperature higher than 21 °C?”, Alice will
only read Office X tagged with {Alice}.
For queries triggering an actuator, each actuator is

empowered with the credentials of its owner. For instance,
the heater actuator HA1 in Alice’s office has Alice’s cre-
dentials. For each table that sets an actuator’s setting, the
latter is effectively transmitted to the actuator if and only
if this actuator belongs to the authorized userset. In the
example, HA1 can use TS1’s temperature values because
of policy k1 that authorizes Alice.

User queries are naturally empowered with user’s cre-
dentials. When a user sends a query, the engine picks
the view that best matches the query among the possible
aggregation levels and then filters the stream on-the-fly,
such that only tuples whose s-tags contain the user as a
member are kept.

V. Policy specification

Figure 2 describes the user interface for specifying the
privacy policy. Users can edit their privacy policy in order
to add a new rule, to modify or to delete an existing one.
The policy specified by the organization, which is read-
only, is also shown on this interface. Although the user is
not allowed to edit it, it is part of its contract to show, for
instance, the number of presence hours in office averaged
by week to its supervisor. Showing this policy makes it
transparent to the user who is allowed to access which
part of its data, which is an interesting privacy property.

To add a policy, a user can specify a default policy that
applies to all of its sensors or a more specific one that ap-
plies for each sensor that he is authoritative for. To set her
privacy preferences, she can specify for each user, which
operation is allowed on the generated tuples and at which
spatial and temporal aggregation level. The different s-tags
specified for the same sensor (organization’s policy, user’s
default policy, user’s specific policy) are then combined
using the ⊕ operator. Moreover, as we mentioned in the
previous section, different users can tag the same sensor
(shared offices for instance), in which case these s-tags will
be combined using the ⊗ operator.

VI. Future Work
TBAC is a preliminary sketch of a security model

presenting innovative features, like palpable, user-defined
privacy, and dissemination control. It grounds on declara-
tively programming smart buildings, using DSMSs such
as SoCQ. We envision a full integration of TBAC in
SoCQ. We want to propose more expressive security poli-
cies and find alternatives to stream duplication (raw and
aggregated), yet provide the same security guarantees.
The integration of privacy measure such as k-anonymity,
l-diversity or t-closeness into a DSMS is a promising
direction to provide privacy settings complementary to s-
tags. Storing data in secure personal tokens [11] can also
alleviate the DBA trust hypothesis. Furthermore, we plan
to enhance the user interface by using an abstraction level
in order to ease the users’ privacy management. We can
ground our work on existing studies such as [4], where
different transparency levels are proposed. Thus, instead
of specifying details about the allowed operation that can
be done on the generated tuples we can use privacy levels.
Moreover, the concept of virtual walls can be used to allow
users to specify a privacy policy that applies to a given
place including a set of sensors.

Acknowledgements
This work has been partially funded by the French ANR

KISS project under grant No. ANR-11-INSE-0005.

References
[1] Y. Gripay, F. Laforest, and J. Petit, “A Simple (yet powerful)

Algebra for Pervasive Environments,” in EDBT, 2010.
[2] Y. Gripay, F. Laforest, F. Lesueur, N. Lumineau, J. Petit,

V. Scuturici, S. Sebahi, and S. Surdu, “ColisTrack: Testbed
for a Pervasive Environment Management System (Demo),” in
EDBT, 2012.

[3] K. Minami and D. Kotz, “Controlling Access to Pervasive In-
formation in the Solar System,” Dartmouth Computer Science,
Tech. Rep., 2002.

[4] A. Kapadia, T. Henderson, J. J. Fielding, and D. Kotz, “Virtual
Walls: Protecting Digital Privacy in Pervasive Environments,”
in Pervasive Computing, 2007.

[5] J. I. Hong and J. A. Landay, “An Architecture for Privacy-
Sensitive Ubiquitous Computing,” in MobiSYS, 2004.

[6] D. E. Bell and L. J. LaPadula, “Secure Computer Systems:
Mathematical Foundations and Model,” MITRE CORP BED-
FORD MA, vol. 1, 1973.

[7] C. McCollum, J. Messing, and L. Notargiacomo, “Beyond the
pale of MAC and DAC-defining new forms of access control,”
IEEE Computer Society Symposium on Research in Security
and Privacy, 1990.

[8] R. Sandhu, K. Ranganathan, and X. Zhang, “Secure Informa-
tion Sharing Enabled by Trusted Computing and PEI Models,”
in ASIACCS, 2006.

[9] R. V. Nehme, E. A. Rundensteiner, and E. Bertino, “A Secu-
rity Punctuation Framework for Enforcing Access Control on
Streaming Data,” in ICDE, 2008.

[10] T. Green, G. Karvounarakis, and V. Tannen, “Provenance
Semirings,” PODS, 2007. [Online]. Available: http://
portal.acm.org/ft_gateway.cfm?id=1265535&type=pdf&coll=
DL&dl=ACM&CFID=23417009&CFTOKEN=49968894

[11] T. Allard, N. Anciaux, L. Bouganim, Y. Guo, L. L. Folgoc,
G. Nguyen, P. Pucheral, I. R. I., Ray, and S. Yin, “Secure
Personal Data Servers: A Vision Paper,” VLDB, vol. 3, no. 1-2,
2010.

6


