
UPnQ: an Architecture for Personal Information
Exploration

Sabina Surdu1, Yann Gripay1, François Lesueur1, Jean-Marc Petit1, and
Romuald Thion2

1 INSA-Lyon, LIRIS, UMR5205
F-69621, France

firstname.lastname@liris.cnrs.fr
2 Université Lyon 1, LIRIS, UMR5205

F-69622, France
firstname.lastname@liris.cnrs.fr

Abstract. Today our lives are being mapped to the binary realm provided by
computing devices and their interconnections. The constant increase in both amount
and diversity of personal information organized in digital files already turned into
an information overload. User files contain an ever augmenting quantity of poten-
tial information that can be extracted at a non-negligible processing cost. In this
paper we pursue the difficult objective of providing easy and efficient personal
information management, in a file-oriented context. To this end, we propose the
Universal Plug’n’Query (UPnQ) principled approach for Personal Information
Management. UPnQ is based on a virtual database that offers query facilities
over potential information from files while tuning resource usage. Our goal is to
declaratively query the contents of dynamically discovered files at a fine-grained
level. We present an architecture that supports our approach and we conduct a
simulation study that explores different caching strategies.3

Keywords: files information overload, personal information management, potential in-
formation, declarative file querying, wrappers

1 Introduction

Computers have triggered a significant paradigm shift in our lives. Our daily existence
is mapped to the binary realm provided by interconnected computing devices. Everyday
actions, events, activities are now translated into personal data, most of them being orga-
nized in personal files: personal maps of morning joggings in the park, digital playlists
of songs from our parents’ vinyl record collections, personal health & social care in-
formation in Electronic Health Record systems, etc. Interactions between citizens and
public administration agencies are being progressively dematerialized too [6].

Our research is motivated by the drawbacks of current personal file data manage-
ment technology. There is a large amount of heterogeneous files storing personal data

3 This work is partially funded by the KISS Project (ANR-11-INSE-0005) of the French Na-
tional Research Agency (ANR).

such as videos, music, semi-structured documents, images, etc. There is also a grow-
ing number of technologies that can extract interesting knowledge from these files:
image and video processing, data and text mining, machine learning, speech recogni-
tion, image pattern recognition, musical analysis, etc. Managing user files in this con-
text becomes cumbersome for both developers and end-users. Developers encounter
time-consuming difficulties to write applications handling heterogeneous files, while
end-users find it difficult to search through all their data to retrieve useful information.
Dedicated Personal Information Management (PIM) systems can ease information man-
agement on specific domains but usually lack file content querying capabilities. In our
previous benchmark [12], we show how data-oriented pervasive application develop-
ment gets significantly simplified when using declarative queries. Yet, to the best of our
knowledge, there are no declarative query languages that can provide application de-
velopers with the ability of writing homogeneous queries over heterogeneous user files,
that could be the core building block of powerful file-oriented personal data manage-
ment applications.

We want to be able to pose fine-grained declarative queries at different levels of
granularity: structure, metadata and content. We identify the following main challenges:
(1) structure heterogeneous files into a homogeneous model; (2) provide a homoge-
neous interface for different data extraction technologies; (3) use an efficient query
execution strategy allowing to query large amounts of files as soon as possible; (4) de-
sign a high level declarative query language, abstracting file access issues and enabling
optimization techniques.

This paper introduces the UPnQ user files data management approach: a virtual
database that offers query facilities over potential data from files that can be obtained on
demand by dedicated wrappers. To this end, we propose a homogeneous representation
of heterogeneous files, regardless of their file format, and fine-grained query facilities:
a UPnQ file is a physical file viewed through a wrapper that understands its format and
semantics. Like SQL over relational DBMSs for most applications, UPnQ is designed
to ease application development rather than to serve as a direct end-user interface. This
work has been carried out in the framework of the ongoing KISS project4, devoted to
managing personal information on secure, portable embedded devices called Personal
Data Servers (PDSs).

The file model and the query language are introduced in Section 2. The architecture
of the UPnQ system is detailed in Section 3. Different query processing strategies are
evaluated in Section 4. Section 5 positions our approach with respect to related work.

2 Model and Language

To easily build applications over physical files, we first propose a homogeneous data-
centric representation of such files in non-first normal form. Subsequently, we define an
SQL-like file-oriented query language, the UPnQ file query language. The full expres-
siveness of SQL can then be applied when querying data from files: join queries can
examine related data from different files, aggregate queries can compute statistics over
a set of files, etc.

4 https://project.inria.fr/kiss/en

2.1 Data Model

Data from UPnQ files are hierarchically organized in capsules and seeds. The outermost
capsule of a file holds all the data from the file. A capsule can contain seeds and / or
lists of inner capsules. Seeds provide atomic data. The capsule-and-seeds terminology
reflects the (nested) non-first normal form relational representation of files: it enables a
coherent description of heterogeneous data in different files.

The schema of a capsule can be described by a tree data structure, whose root is the
capsule’s name. Figure 1(a) shows the schema of a Song capsule. The root node and
intermediary nodes (squares on the figure) are capsule names, and leaf nodes (circles)
are seed names. Intermediary nodes shown between curly braces represent lists of cap-
sules at the data level, i.e., the instance level of a UPnQ file. Within a capsule, seeds
receive atomic values, e.g., Artist might have a value of “Beatles”, etc.

The type of a file is determined by the name of the outermost capsule. A file can also
be individually associated with a set of tags, that are usually user-defined and provide
further information about the file as seen through the user’s eyes. Figure 1(b) shows two
UPnQ files (Yesterday and Mr. Tambourine Man) on user Tom Sawyer’s device. Both
files have a Song file type, due to their outermost capsule. They also contain atomic
data at the Song capsule level with seeds Artist, Title, Tempo, etc. The Song capsule
also contains a list of Album capsules. Each Album capsule describes the Title and
RecordLabel of the album, and inner capsules for Awards earned by the album.

}"

Song"

Genre"RawSong"Title ""Ar2st"

RecordLabel"Title"

Album{s}"

Award{s}"

Title"Country"

{"
{" }"

Year"

Key"Tempo"

(a) The schema of a song capsule

Song%

Albums%

Ar-st:%%
Beatles% Title:%%

Yesterday%
Genre:%%

Baroque%pop%

Title:%%
Help!% RecordLabel:%%

Parlophone%

Album%

Awards%

Title:%%
Love%

Album%

Awards%

Period:%%
Flower%Power%

Tom%Sawyer’s%device%

RawSong:%%
%

Yesterday% Mr.%Tambourine%Man%

RecordLabel:%%
Apple%

Song%

Albums%

Ar-st:%%
Bob%Dylan%

Title:%%
Mr.%Tambou%
rine%Man%%

Genre:%%
Folk%

%
Title:%%

Bringing%It%All%%
Back%Home%

RecordLabel:%%
Columbia%

Album%

Awards%

RawSong:%%
%

Period:%%
Flower%Power%

Language:%%
English%

Key:%%
D%major%%

Key:%%
F%major%% Tempo:%%

2/4%%

Tempo:%%
4/4%%

(b) Two song files on Tom Sawyer’s device

Fig. 1. Schema and Instances of Song capsules

2.2 Query Language

We want to express fine-grained queries on data from files sharing a common structure
of interest. The query engine is responsible for selecting files providing wanted cap-
sules, and for extracting capsule data from files through corresponding wrapper calls.
We extend the SoCQ system [10] to this purpose; the resulting engine allows us to per-
form fine-grained, lazy data extraction from files, in a relational setting, using SoCQ’s
binding patterns and virtual attributes constructs to build XD-Relations (eXtended Dy-
namic Relations). For UPnQ, SoCQ’s concept of SERVICE is replaced with CAPSULE

to interact with wrappers through binding patterns in order to provide values for virtual
attributes. Our goal is to achieve the UPnQ vision with a UPnQ file engine thanks to the
core mechanism of the SoCQ system.

A relational view on file sets We define a capsules translation operator that builds a
XD-Relation representing a set of files providing some common features. The purpose
of this operator is to translate capsules into a relational, SoCQ-queryable view. We also
define a tags translation operator, that builds a relation with values for a set of tags
associated to a set of files.

Listing 2(a) describes the UPnQ query that creates an XD-Relation based on music
files providing Artist, Title, Key and Album capsules. Assume the file repository
contains three songs. The resulting XD-Relation FPSongs is shown in Figure 2(c).
There are three capsules that contain capsules Artist, Title, Key and Album, all of
them being Song capsules in this case. We have therefore one tuple for each Song
capsule. Data are however not materialized yet, as attributes are virtual in this XD-
Relation.

Querying files in UPnQ The next step is to query files’ capsules using the binding
patterns associated to XD-Relations to retrieve data for virtual attributes. Using previous
XD-Relation FPSongs, Listing 2(b) describes a UPnQ query that materializes data
concerning the Artist, song Title, and the Album Title. Through binding patterns, a
query can interact with wrapper invocations and control their behavior. The resulting
XD-Relation is depicted in Figure 2(d). Some data, here the albums’ record label, do
not need to be retrieved from the files for this query.

CREATE RELATION FPSongs (
Song CAPSULE,
Artist STRING VIRTUAL,
Title STRING VIRTUAL,
Album CAPSULE VIRTUAL,
Album.Title STRING VIRTUAL,
Album.RecordLabel STRING VIRTUAL)

USING BINDING PATTERNS (
Artist[Song] () : (Artist),
Title[Song] () : (Title),
Album[Song] () : (Album,

Album.Title, Album.RecordLabel))
AS TRANSLATE CAPSULES
PROVIDING Artist, Title, Key, Album

(a) a UPnQ Capsules Translation Query

SELECT Artist, Title, Album.Title
FROM FPSongs
WHERE Title = "Mr. Tambourine Man"
or Title = "Yesterday"

USING BINDING PATTERNS
Artist, Title, Album;

(b) a UPnQ Data Extraction Query

Song Artist Title Album Album.Title Album.RecordLabel

music:
Yesterday.mp3

* * * * *

music:
MrTambourineMan.ogg

* * * * *

music:
DearPrudence.mp3

* * * * *

(c) XD-Relation result of the UPnQ Capsules
Translation Query (* is absence of value)

Artist Title Album.Title

Bob Dylan Mr. Tambourine Man Bringing It All Back Home

Beatles Yesterday Help!

Beatles Yesterday Love

(d) XD-Relation result of the UPnQ Data Ex-
traction Query for two songs

Fig. 2. Examples of UPnQ queries – Capsules Translation & Data Extraction

3 Enabling Technologies and Architecture

UPnQ Wrappers. The UPnQ system relies on parameterizable wrappers that can be
invoked to extract pieces of data from various physical files and expose them, in a ho-
mogeneous manner. Dynamic UPnQ wrappers present two innovative features: 1) they
allow fine-grained data management, and 2) they can be invoked on files on demand,
i.e., when a query requires data from a physical file.

There’s a multitude of APIs out there that allow manipulating various file formats.
The iCal4j API allows the manipulation of iCalendar files, the Apache POI API pro-
vides support for Microsoft Office files, etc. The development of such APIs supports
the fact that our UPnQ wrapper vision is feasible. For these wrappers, we envision an
ecosystem of downloadable plugins, like today’s application stores.

UPnQ Queries. UPnQ files are mapped to relational tuples. Some of the reasons for
choosing to project a file environment on the relational canvas can be drawn from [9]:
the simplicity, the robustness and the power of the model, which are well-known in the
database community for a long time.

The goal of the UPnQ system is to express declarative queries on top of UPnQ
files, so queries need to be given control over imperative wrappers. We also need to
provide a virtual database over files, where data can be extracted using both lazy and
eager approaches. We turn our attention to Pervasive Environment Management Sys-
tems (PEMSs) like SoCQ [10] or Active XML [3]. Both systems can homogeneously
query distributed heterogeneous entities and allow lazy evaluation of remote service
methods. SoCQ is here preferred to Active XML for its SQL-like language.

Architecture. Figure 3 shows the main components of the UPnQ system.The UPnQ file
system manages the UPnQ wrappers and files, i.e., the available wrappers and files in the
system. The UPnQ relational file engine contains a query engine that handles relations,
smart folders (subset of files defined by dedicated queries) and a cache. During query
execution, the engine interacts with the UPnQ file system to get data from physical files
via wrappers, potentially using the cache to improve response time.

Physical file
repository

Applications

UPnQ system

UPnQ relational file engine

UPnQ file system

UPnQ wrappers registry

Smart folders
registry

UPnQ files registry

Relations
registry

Query engine

UPnQ session manager

Context Public box Session

Wrapper Wrapper Wrapper

Capsules cache

Web
application

WebDAV
server

…

Virtual file system Virtual storage Virtual storage

Physical file
repository

Fig. 3. Architecture of the UPnQ system

4 Experiments on the Query Execution Strategies

We conducted a simulation study to comparatively assess the performance of four dif-
ferent query processing, measuring query execution time, query response time and cu-
mulative CPU usage (unit is an abstract symbolic instant (si)). The four assessed strate-
gies are Eager, Lazy, UPnQ and A-UPnQ (for Active UPnQ). Eager is the typical case
of PIM where every file is preprocessed and stored in a database, leading to a high boot-
strap cost. Lazy is the opposed case where data is only fetched when needed, leading to
a long response time. UPnQ adds a capsule-level caching method to the lazy strategy,
improving the response time for queries exhibiting some redundancies. A-UPnQ adds
prefetching to UPnQ, allowing to seamlessly query files which have been preprocessed
or not and achieving in the end the query response times of the eager strategy.

We simulate a file environment of 50000 files with 100 different file types (10 to
100 capsules). A workload is composed of 1800 queries that examines 1 to 30 capsules
from 1 to 1000 files, based on two Zipf popularity curves. Queries arrive at the system
following a Poisson process, interleaved with 200 random insertions of 1 to 1000 new
files and 100 random updates of 1 to 100 files.

Figure 4 depicts the obtained results for 2 opposite workloads. In Workload W1,
queries arrive fast at the system and are likely to overlap to a significant extent. In
Workload W2, queries arrive less frequently at the system and have a small overlap. For
both workloads, we simulated smart wrappers on expensive files.

As expected, the CPU cost per query (Figures 4.(a) and 4.(b)) is bounded by the
Eager and the Lazy extreme strategies. For A-UPnQ, because the system has more idle
time in W2, we can see the CPU cost decreases more abruptly than for W1, since the
cache fills faster. For both workloads, A-UPnQ eventually catches up with eager, run-
ning queries on files that are entirely stored in the cache. The reason UPnQ decreases
slower in W2, is that queries don’t overlap as much as they do in W1, so cache hits
are less likely. The cumulated CPU cost (Figure 4.(c) and Figure 4.(d)) shows the boot-
strap disadvantage of Eager, the same for both workloads. A-UPnQ is bounded by Ea-
ger. UPnQ has the best performance in this case, since it only processes data retrieval
queries and cache invalidation during updates. Query response times for both workloads
(Figure 4.(e) and Figure 4.(f)) shows we have found workloads for which A-UPnQ
outperforms Eager. This happens because of their different behaviors when processing
inserts and updates. UPnQ tends to Eager as well in W2 (Figure 4.(f)). When queries
are fast and overlap more, UPnQ surpasses Eager in an obvious manner (Figure 4.(e)).

5 Related Work

File systems are not a viable choice for personal data management, since searching files
is either restricted to their name, physical location, or metadata maintained by the file
system, or performed on format-dependent tags content by dedicated applications (ID3
for music files, EXIF for photos). Personal Information Managers (PIM) are becom-
ing increasingly popular, but display in turn their own disadvantages. Some PIMs like
PERSONAL [2] offer a homogenous management of user files but stick to a file gran-
ularity for querying. Others like EPIM [1] and MyLifeBits [8] manage more abstract

(a) W1 query execution CPU cost (b) W2 query execution CPU cost

(c) W1 cumulated CPU cost (logscale) (d) W2 cumulated CPU cost (logscale)

(e) W1 query response time (logscale) (f) W2 query response time (logscale)

Fig. 4. Simulation of workloads W1 and W2 with expensive files and smart wrappers (500 runs)

user items and their relations, and then lose the link with concrete user files. Many
PIMs can indeed do a great job at easing information management as compared to file
systems, but they do so on specific, delimited islands of data, and each PIM manages
information in its own, personal way, usually lacking file content querying capabilities.
The compartmentalised PIM support issue is raised in [7].

Finally, we mention SQLShare [11] and NoDB [4]. SQLShare is an ad hoc databases
management platform which enable SQL querying over data scattered across multiple
files. NoDB is big-data-oriented and maintains the main features of a DBMS without
requiring data loading: data-to-query time is minimized up to the point where query
processing directly reads raw files. Both systems however do not address issues related
to file-specific model or query language (only classic SQL), and do not propose an ar-
chitecture to deal with the many file types found in a user repository (only CSV files).

6 Conclusion

In the context of personal information management, we propose a new approach for
managing data stored and updated in user files, namely the UPnQ principled approach,
as user files are seen as the primary source of user-managed personal information. Our
objective is to declaratively query the contents of dynamically discovered files at a
fine-grained level. We defined a file model that allows a homogeneous representation
of structured heterogeneous personal files, abstracted as UPnQ files. We introduced
wrappers that extract data from files, as a core component of our architecture. We then
defined a declarative file-oriented query language that allows application developers
to express queries over files. Experimental results show that the UPnQ system can at-
tain reasonable performance, and even outperformed query response time of an eager
strategy for a reasonable workload. Due to lack of space, we omitted the results of
our complete set of experiments, with 16 other different workloads and with different
combinations of wrapping cost and granularity. Nevertheless, they are also favorable to
UPnQ and A-UPnQ strategies.

Our current research direction is the integration of the UPnQ vision in the secure
context of Personal Data Servers [5], which aims at giving back control over their files to
users. In this setting, the severe hardware constraints imply that large amount of data (up
to several Gigabytes) stored in files needs to be queried using a few Kilobytes of RAM
and low CPU power. The embedded database engine should still provide acceptable
performance, which entails the need for an embedded query execution model.

References
1. Essential PIM. http://www.essentialpim.com/.
2. Personal. https://www.personal.com.
3. S. Abiteboul, O. Benjelloun, and T. Milo. The Active XML project: an overview. VLDB J.,

17(5):1019–1040, 2008.
4. I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki. NoDB: Efficient Query

Execution on Raw Data Files. In Proceedings of SIGMOD’12, pages 241–252, 2012.
5. T. Allard, N. Anciaux, L. Bouganim, Y. Guo, L. L. Folgoc, B. Nguyen, P. Pucheral, I. Ray,

I. Ray, and S. Yin. Secure Personal Data Servers: a Vision Paper. PVLDB, 3(1):25–35, 2010.
6. N. Anciaux, W. Bezza, B. Nguyen, and M. Vazirgiannis. MinExp-card: limiting data collec-

tion using a smart card. In Proceedings of EDBT’13, pages 753–756, 2013.
7. R. Boardman. Workspaces that Work: Towards Unified Personal Information Management.

In Proceedings Volume 2 of the 16th British HCI Conference, 2002.
8. J. Gemmell, G. Bell, and R. Lueder. MyLifeBits: a personal database for everything. Com-

mun. ACM, 49(1):88–95, 2006.
9. Y. Gripay. A Declarative Approach for Pervasive Environments: Model and Implementation.

PhD thesis, Institut National des Sciences Appliquées de Lyon, 2009.
10. Y. Gripay, F. Laforest, and J.-M. Petit. A Simple (yet Powerful) Algebra for Pervasive Envi-

ronments. In Proceedings of EDBT’10, pages 359–370, 2010.
11. B. Howe, G. Cole, N. Khoussainova, and L. Battle. Automatic example queries for ad hoc

databases. In Proceedings of SIGMOD’11, pages 1319–1322, 2011.
12. S. Surdu, Y. Gripay, V.-M. Scuturici, and J.-M. Petit. P-bench: Benchmarking in data-centric

pervasive application development. In Transactions on Large-Scale Data- and Knowledge-
Centered Systems XI, volume 8290 of Lecture Notes in Computer Science, pages 51–75.
Springer Berlin Heidelberg, 2013.

