
HAL Id: hal-02917680
https://hal.inria.fr/hal-02917680

Submitted on 19 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IoTMap: A protocol-agnostic multi-layer system to
detect application patterns in IoT networks

Jonathan Tournier, François Lesueur, Frédéric Le Mouël, Laurent Guyon,
Hicham Ben-Hassine

To cite this version:
Jonathan Tournier, François Lesueur, Frédéric Le Mouël, Laurent Guyon, Hicham Ben-Hassine.
IoTMap: A protocol-agnostic multi-layer system to detect application patterns in IoT networks. 10th
International Conference on the Internet of Things (IoT 2020), Oct 2020, Malmö, Sweden. �hal-
02917680�

https://hal.inria.fr/hal-02917680
https://hal.archives-ouvertes.fr

IoTMap: A protocol-agnostic multi-layer system to detect
application patterns in IoT networks

Jonathan Tournier
jonathan.tournier@insa-lyon.fr
Univ Lyon, INSA Lyon, CITI

Villeurbanne, France
AlgoSecure
Lyon, France

François Lesueur
Frédéric Le Mouël

francois.lesueur@insa-lyon.fr
frederic.le-mouel@insa-lyon.fr
Univ Lyon, INSA Lyon, CITI

Villeurbanne, France

Laurent Guyon
Hicham Ben-Hassine

laurent.guyon@algosecure.fr
hicham.ben-hassine@algosecure.fr

AlgoSecure
Lyon, France

ABSTRACT
The growth of the Internet of Things (IoT) results in a proliferation
of different protocols (ZigBee, Bluetooth, 6LowPAN, Z-Wave, Wi-Fi,
etc.). Organizations tend to quickly deploy several IoT applications
over time and thus face heterogeneous IoT systems, combining
different IoT protocols in different places of the overall system. This
heterogeneity of protocols makes these networks hard to monitor
or control, and some misconfigurations or unexpected device be-
haviours may even expose users to security issues. In this work, we
propose the IoTMap system. IoTMap models interconnected and
heterogeneous IoT networks, combining different protocols, by pro-
viding a generic stack and a unified packet format. IoTMap builds an
iterative graph model where high-level semantics can progressively
be deduced, ranging from packet transmission to application-type
analysis. As such, IoTMap detects application behaviours amongst
devices implementing different protocols, interconnected through
a multi-protocol hub. In its current implementation (available at
https://github.com/AlgoSecure/iotmap), IoTMap can inspect Zig-
Bee, BLE and 6LowPAN networks.

CCS CONCEPTS
• Security and privacy→Mobile and wireless security; •Net-
works→ Network management.

KEYWORDS
IoT, IoT networks, IoT modelling, heterogeneous network, IoT Se-
curity, pattern detection

ACM Reference Format:
Jonathan Tournier, François Lesueur, Frédéric Le Mouël, Laurent Guyon,
and Hicham Ben-Hassine. 2020. IoTMap: A protocol-agnostic multi-layer
system to detect application patterns in IoT networks. In IoT ’20: 10th Interna-
tional Conference on the Internet of Things, October 06–09, 2020, Malmö, Swe-
den. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IoT ’20, October 06–09, 2020, Malmö, Sweden
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The Internet of Things (IoT) refers to a network of physical objects
(things) able to communicate (between them and with external
entities) as well as to sense and interact with the real world. With
different computing and sensorial capabilities, these connected
devices provide complex interactions with their environment and
users. IoT is rapidly growing as the number of devices strongly
increases and should reach several billions in 20201.

The proliferation of connected devices, as well as the develop-
ment of multitudinous applications, show the interest expressed by
various sectors such as industry, healthcare or energy management.
However, the constraints and needs of these applications lead to
an overall heterogeneity in the IoT. We find a plethora of proto-
cols settling the same problem. Hence, this heterogeneity can end
up in networks with devices which communicate using multiple
protocols [11]. For instance, two devices with similar sensor ca-
pabilities could use different protocols to send back their data to
the same controller. However, existing monitoring tools are still
protocol-specific, which means they cannot model IoT systems com-
posed of different IoT protocols. This heterogeneity of protocols
and associated monitoring tools increases the difficulty to control
and monitor these networks. For instance, some misconfigurations,
unexpected device behaviours or even security vulnerabilities may
expose users or companies to security issues or critical data leaks.
Many examples show that devices deployed in the wild with insuf-
ficient security can be turned into zombies exploited by botnets [7].
Besides, attackers can use flaws in protocol design and implementa-
tion [1, 5, 13, 19] to tamper data or take control of the network. This
attack surface is difficult to monitor because of the deployment of
various protocols and highlights the need to find a holistic solution
to monitor and understand these networks.

In this work, we introduce IoTMap, a system capable of mod-
elling interconnected and heterogeneous short- and mid-range IoT
networks. Our contribution is two-fold: first, we describe a set of
generic graphs to model heterogeneous IoT protocols (Zigbee, BLE
or 6LoWPAN); second, we propose algorithms to calculate this set
of graphs. In Section 2, we present our motivating scenario on
which the whole paper is illustrated. In Section 3, we describe our
graph-based methodology to model IoT networks and applications.
In Section 4, we propose algorithms to construct these graphs from
raw network captures. In Section 5, we evaluate our proposition.
Finally, we describe related work in Section 6 and conclude in Sec-
tion 7.

1Gartner - 5.8 Billion IoT Endpoints in 2020, https://www.gartner.com/[...]-io

https://github.com/AlgoSecure/iotmap
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io

IoT ’20, October 06–09, 2020, Malmö, Sweden J. Tournier, et al.

2 MOTIVATING SCENARIO
This section presents a typical setup we target to map and which we
use as an example throughout this paper. To assess the genericity
of our model, this scenario is composed of twelve devices commu-
nicating over three different IoT protocols (some devices acting
as gateways between different protocols). To show different cross-
protocol interactions, it runs four actuator-sensor applications and
four data-aggregation applications. It is illustrated in Figure 1.

d1

d2

d4

d3

d5

d6

d7

d8

d9

d10

d11

d12

ZigB
ee

Zi
gB
ee

Z
ig
B
ee

ZigBee

B
T
L
E

BTLE

BT
LE

O
S4
I

O
S4I

OS4I

OS4I

OS
4I

O
S
4I

O
S4I

O
S4
I

Applications

ASP1
ASP2
ASP3
ASP4

DAG1
DAG2
DAG3
DAG4

Figure 1: Experimental lab.

The three protocols are ZigBee, BLE and OS4I. ZigBee and BLE
are well known and widely used IoT protocols. OS4I, standing for
"Open Stack For IoT", is our local naming for an open-source stack
for IoT using IEEE 802.15.4, 6LoWPAN, UDP/TCP and CoAP/MQTT.

Four applications are sensors-actuators. ASP1 is a ZigBee-only
application involving 𝑑1, 𝑑3 and 𝑑4. The controller 𝑑4 requests the
sensor 𝑑1 every sixty seconds to obtain its sensed value, and, then
updates the actuator 𝑑3 according to the obtained the value. ASP2
is an OS4I-only application involving 𝑑8, 𝑑10, 𝑑12. Device 𝑑12 acts
as the actuator and the device 𝑑10 as the sensor. The controller 𝑑8
then requests the sensor every forty seconds and sends a command
regarding the value returned by device 𝑑12. ASP3 is a BLE-ZigBee
application involving 𝑑5, 𝑑3 and 𝑑4. The controller 𝑑4 queries the
sensor 𝑑5 every sixty seconds using BLE communications and up-
dates accordingly the actuator 𝑑4 using ZigBee communications.
ASP4 is a BLE-ZigBee-OS4I application involving 𝑑3, 𝑑4, 𝑑7 and
𝑑9. The controller 𝑑4 initiates a request to the controller 𝑑7 to re-
trieve data from the sensor 𝑑9. According to the returned value,
the controller 𝑑3 sends a command to the actuator 𝑑3. Communi-
cations between the controllers 𝑑4 and 𝑑7 are carried over BLE.
Messages between the controller 𝑑7 and the sensor 𝑑9 are sent over
OS4I communications. Finally, the ZigBee protocol is used to carry
communication between the controller 𝑑4 and the actuator 𝑑3.

Four other applications are data-aggregation procedures. In
DAG1, 𝑑6 displays the temperatures sensed by 𝑑5 and 𝑑9 using
BLE and OS4I. In DAG2, 𝑑2 monitors the status of 𝑑1 (temperature
sensor) and 𝑑3 (actuator status) using Zigbee. In DAG3, 𝑑4 gets
temperatures from 𝑑1 and 𝑑5 using BLE and Zigbee. In DAG4, 𝑑11
monitors the sensors 𝑑10 and 𝑑9 over OS4I.

Application

Transport

Network

Data Link

Physical

Abstract stack

IEEE
802.15.4

IPv6
6LoWPAN

UDP/TCP

CoAP/MQTT

OS4I

ZigBee

IEEE
802.15.4

ZigBee

App profiles

IPSS

L2CAP

Bluetooth

BLE

Figure 2: IoT stacks comparison.

We assume this scenario to be relevant enough to evaluate the
efficiency of IoTMap as fitting with the scenarios provided in the
literature [3, 16].

3 GRAPH-BASED MODELLING
This section presents the model used to represent multiple layers of
an IoT network. Each layer, as illustrated in Figure 2, corresponds
to a specific graph and highlights a specific point in the modelling.
The modelling relies on an iterative approach where the creation of
each graph (except for the first one) requires information obtained
from the underlying one. For all graphs, we define 𝑁 the set of
nodes of the network and 𝐸 the set of edges according to the graph,
the whole defined as follows:
• Data-Link graph 𝐺𝐷𝐿 (𝑁, 𝐸𝐷𝐿) represents information ob-
tained at the data link layer and highlights single-hop (radio)
communications;
• Network graph𝐺𝑁𝑊𝐾 (𝑁, 𝐸𝑁𝑊𝐾) represents information
obtained at the network layer and highlights end-to-end
communications;
• Transport graph 𝐺𝑇𝑅𝐴𝑁𝑆 (𝑁, 𝐸𝑇𝑅𝐴𝑁𝑆) represents infor-
mation obtained at the transport layer and highlights the
types of application deployed in the network with the role
of each device;
• Application graph𝐺𝐴𝑃𝑃 (𝑁, 𝐸𝐴𝑃𝑃) represents information
obtained at the application layer and highlights the logical
flows between nodes.

Some nodes, for instance gateways, may provide several network
interfaces for different protocols, in which case they have multiple
data-link and network addresses (one for each network interface). A
node is thus defined by these characteristics: ID, a unique identifier
for the node; a set of data-link (DL) and network (NWK) addresses; a
set of roles, initially empty, which is completed during the analysis.

Throughout this section, each graph is illustrated with the sce-
nario described in Section 2. The algorithmic generation of these
graphs is presented in Section 4.

3.1 Data-link graph
This graph represents all connections between nodes at the data-
link layer, it thus corresponds to single-hop radio communications.
To construct this graph, we draw an edge for each communication
between two nodes from the source node to the recipient. We then
label every edges with the timestamp of the communication, the
data-link and networks addresses (source and destination) and the
protocol used.

Figure 3 represents the data-link graph of the scenario described
in Section 2. We limit to one the number of edges between two
nodes to improve the readability of the figure, but in reality, as many
edges as communications are present is the graph. For instance, the

IoTMap IoT ’20, October 06–09, 2020, Malmö, Sweden

edge from 𝑑1 to 𝑑2 is labelled with the timestamp 1.5, the data-link
address source 0𝑥7𝑏65, the data-link address destination 0𝑥0 and
the remaining information such as network addresses and protocol
are summarized with tag 𝑃 (Payload).

d1

d2

d4

d3

d5

d6

d7

d8

d9

d10

d11

d12

1.5,
0x7b65,

0x0,
P

1,
0x0,

0x7b65,
P

12
, 0
x0
, 0
x3
18
1,
P

12
.5
, 0
x3
18
1,
0x
0,
P

1
.7
,
0
x
0
,
0
x
b
e
e
f,

P

0
.8
,
0
x
b
e
e
f,

0
x
0
,
P

25, 0x318
1, 0xbeef

, P

2, 0xbeef
, 0x3181,

P

7
2
,
1
D
:5
d
,
b
2
:4
f,

P

7
1
,
b
2
:4
f,

1
D
:5
d
,
P

12
4,

1b
:9d

, b
2:4

f, P

12
2,

b2
:4f

, 1
b:9

d,
P

45, 11:72, b2:4f, P

46, b2:4f, 11:72, P

13, ce:a4, 27:07, P

13.5, 27:07, ce:a4, P

123,
82:57,

cb
:03,

P

123.5,
cb
:03,

82:57,
P

14
,
ce
:a
4,
c9
:2
d,
P

Figure 3: Data-Link graph.

3.2 Network graph
This graph represents all connections between nodes at the network
layer, it thus corresponds to end-to-end communications. Hence,
this graph highlights nodes that act only as routers (only forward
packets). We use the same specification presented in Section 3.1 to
label every edges of the network graph, i.e the timestamp, data-link
addresses (source and destination), network addresses (source and
destination) and the protocol.

Figure 4 represents the network graph of ourmotivating scenario.
We observe many edges are added in comparison to the data-link
graph such as from 𝑑1 to 𝑑4 or between 𝑑11 and 𝑑8. From this
addition and with the data-link graph, we can deduce that 𝑑2 and
𝑑10 act as routers. Indeed, from the data-link graph, we know that
𝑑1 communicates with 𝑑2 and 𝑑2 communicates with 𝑑4 and with
the knowledge provided by the network graph, we validate that 𝑑2
is a router that forwards messages between 𝑑1 and 𝑑4. Some edges
may also be similar to those of the data-link graph. We can see that
communications between the device 𝑑7 and 𝑑9, for instance, are
identical in both data-link and network graphs. This is mainly due
to the proximity of each node deployed in the network.

3.3 Transport graph
This graph exposes the orientation of the data flow and assigns a
role for every nodes. We (1) replace every edges between two nodes
by a single oriented one and (2) assign a role label to nodes. We
merge the timestamps of every communications together and store
it as a value in the label along with data-link addresses, network
addresses and the protocol. We define four roles for nodes: source
(Src), sink (Sk), source-sink (Src-Sk) and controller (Ctrl). A node with
the role source-sink is involved in some communications where it
sends data and other ones where it receives data. The controller
role represents a nodes aggregating and analysing data from one
or several sources to control one or several sinks.

d1

d2

d4

d3

d5

d6

d7

d8

d9

d10

d11

d12

1
.5
,
0
x
7
b
6
5
,
0
x
b
eef,

P

1
,
0
x
b
eef,

0
x
7
b
6
5
,
P

2, 0xbeef
, 0x3181,

P

7
2
,
1
D
:5
d
,
b
2
:4
f,

P

7
1
,
b
2
:4
f,

1
D
:5
d
,
P

12
4,

1b
:9d

, b
2:4

f, P

12
2,

b2
:4f

, 1
b:9

d,
P

45, 11:72, b2:4f, P

46, b2:4f, 11:72, P

13, ce:a4, 27:07, P

13.5, 27:07, ce:a4, P
123,

82:57,
cb
:03,

P

123.5,
cb
:03,

82:57,
P

14
,
ce
:a
4,
c9
:2
d,
P

Figure 4: Network graph.

Figure 5 depicts the transport graph of our scenario. We observe
that every bidirectional communications from the network graph
are replaced by a single oriented edge. Roles are also assigned to
nodes corresponding to the orientation of the data flow. For instance,
in Figure 4, 𝑑1 and 𝑑2 use a bidirectional scheme to communicate.
However, the data flow between those two devices is oriented from
𝑑1 to 𝑑2. Since the data flow starts from 𝑑1 to reach 𝑑2, 𝑑1 should
be defined as the source of the data flow and 𝑑2 as the sink of the
data flow. A controller, such as 𝑑4 or 𝑑7, is a node which is involved
in at least two communications with the role of source in one and
the role of sink in another. However, contrary to a source-sink node,
these two communications are correlated. This means that 𝑑4 and
𝑑7 aggregates and analyses the data from the source and sends a
message in consequence to the sink. In Figure 5, 𝑑4 is identified as
a controller where 𝑑5 is the source and 𝑑3 is the sink.

Srcd1

Skd2

Ctrld4
Src-
Skd3

Srcd5

Skd6

Ctrld7

Ctrld8

Srcd9

Srcd10

Skd11

Skd12

1
.5
,
0
x
7
b
6
5
,
0
x
b
eef,

P

2, 0xbee
f, 0x318

1, P

7
2
,
1
D
:5
d
,
b
2
:4
f,

P 46, b2:4f, 11:72, P

12
4,

1b
:9d

, b
2:4

f, P

123.5,
cb
:03,

82:57,
P

13, ce:a4, 27:07, P

14
,
ce
:a
4,
c9
:2
d,
P

Figure 5: Transport graph with roles and oriented edges.

3.4 Application graph
This last graph highlights applications detected in the network.
Applications are defined by patterns described in Subsection 4.4.
Figure 6 represents Actuator-Sensor applications in the network
illustrated in Section 2.

IoT ’20, October 06–09, 2020, Malmö, Sweden J. Tournier, et al.

Srcd1

Skd2

Ctrld4
Src-
Skd3

Srcd5

Skd6

Ctrld7

Ctrld8

Srcd9

Srcd10

Skd11

Skd12
IN

T
E
R
A
C
T

IN
T
ER

A
C
T

INTERACT

IN
T
E
R
A
C
T

Figure 6: Application graph.

We observe that every edges from the transport graph are re-
placed by new edges labelled as INTERACT. We can observe trans-
protocolar interactions, such as 𝑑9, which is a OS4I device, inter-
acting with 𝑑3, which is a ZigBee device.

4 PATTERNS DETECTION
IoTMap uses a graph-based iterative approach to provide a mod-
elling of the network presented in Figure 7. This approach uses four
functions where each one takes the output of the previous func-
tion and the desired pattern associated as inputs. The modelling
starts with the function 𝐹𝐷𝐿 converting intercepted communica-
tions stored in 𝑃𝐶𝐴𝑃𝑠 to the first graph𝐺𝐷𝐿 using the pattern 𝑃𝐷𝐿 .
The second function 𝐹𝑁𝑊𝐾 inputs 𝐺𝐷𝐿 and the pattern 𝑃𝑁𝑊𝐾

and generates the graph 𝐺𝑁𝑊𝐾 . Then 𝐺𝑁𝑊𝐾 and 𝑃𝑇𝑅𝐴𝑁𝑆 feed
the function 𝐹𝑇𝑅𝐴𝑁𝑆 to model the graph 𝐺𝑇𝑅𝐴𝑁𝑆 . Finally, the last
function 𝐹𝐴𝑃𝑃 inputs the 𝐺𝑇𝑅𝐴𝑁𝑆 graph and a pattern 𝑃𝐴𝑃𝑃 and
model the graph 𝐺𝐴𝑃𝑃 . As represented in Figure 7, IoTMap may
iterate on the 𝐹𝐴𝑃𝑃 with different patterns to produce different ap-
plication graph. Only the 𝐹𝐷𝐿 requires human intervention to map
the potential multiple interfaces of a device using several protocols,
and then the graph generation is entirely automatic. All proposed
patterns for each function are detailed in the following sections.

F𝐷𝐿 F𝑁𝑊𝐾 F𝑇𝑅𝐴𝑁𝑆 F𝐴𝑃𝑃
PCAPs 𝐺𝐷𝐿 𝐺𝑁𝑊𝐾 𝐺𝑇𝑅𝐴𝑁𝑆 𝐺𝐴𝑃𝑃

𝑃𝐷𝐿 𝑃𝑁𝑊𝐾 𝑃𝑇𝑅𝐴𝑁𝑆 𝑃𝐴𝑃𝑃

𝐺𝑇𝑅𝐴𝑁𝑆 𝐺𝐴𝑃𝑃

Figure 7: Graph-based iterative approach.

4.1 Data-Link pattern 𝑃𝐷𝐿

The first step is to create𝐺𝐷𝐿 from the captured packets. Since 𝐹𝐷𝐿
inputs are protocol-specific PCAPs, we provide a pattern for each
supported protocol such as 𝑃𝐷𝐿𝑂𝑆4𝐼 for OS4I protocol, 𝑃𝐷𝐿𝑍𝐵
for ZigBee protocol and 𝑃𝐷𝐿𝐵𝑇𝐿𝐸 for BTLE protocol. Each pat-
tern analyses protocol-specific information from related PCAP and
computes a partial 𝑃𝐷𝐿 graph as described in Section 3.1. After
analysing every PCAP, 𝐹𝐷𝐿 merges all the graphs and outputs𝐺𝐷𝐿 .

Every pattern use a similar layer-per-layer methodology to ex-
tract information from the PCAP. For instance, the 𝑃𝐷𝐿𝑂𝑆4𝐼 pattern
extracts the data-link addresses from the 802.15.4 layer and the net-
work addresses from the 6LoWPAN layer. The CoAP layer is then
used to differentiate data packets from control packets (such as ACK
or SYN, which we do not consider). Finally, the 𝑃𝐷𝐿𝑂𝑆4𝐼 pattern
creates an edge between two nodes for each packet in the PCAP
and uses the information extracted to fill the label of the edge.

4.2 Network pattern 𝑃𝑁𝑊𝐾

The Network pattern 𝑃𝑁𝑊𝐾 identifies end-to-end communications
from the graph 𝐺𝐷𝐿 . In other words, this pattern detects commu-
nications between two nodes excluding intermediate nodes such
as routers or gateways. We use information stored in each edge
𝑒 ∈ 𝐸𝐷𝐿 of the graph 𝐺𝐷𝐿 and correlate it with each node 𝑛 ∈ 𝑁 ,
where 𝑁 is the set of node of each graph. Then, if the network
source address stored in the edge 𝑒 and represented by 𝑒𝑠𝑟𝑐 is equal
to the network address of the node 𝑛𝑠𝑟𝑐 , we draw an edge from
the node 𝑛 to the recipient identified by the network destination
address stored in the edge 𝑒𝑑𝑠𝑡 .

4.3 Transport pattern 𝑃𝑇𝑅𝐴𝑁𝑆

In this section, we describe three different patterns to construct
𝐺𝑇𝑅𝐴𝑁𝑆 . We first use patterns OWT and PBC(1) to identify the
direction of the data flow and accordingly assigning a role to each
node amongst: source, sink, source-sink. This produces a temporary
graph that is used by the last pattern CTRL(2). Each pattern gener-
ates a sub-graph of the final graph 𝐺𝑇𝑅𝐴𝑁𝑆 . Those sub-graphs are
then merged by the function 𝐹𝑇𝑅𝐴𝑁𝑆 to output the graph𝐺𝑇𝑅𝐴𝑁𝑆 .

Algorithm 1 Periodic bidirectional communications pattern (PBC)
Input: 𝐺𝑁𝑊𝐾

Output: Part of 𝐺𝑇𝑅𝐴𝑁𝑆
𝑁𝑁𝑊𝐾 the set of nodes of 𝐺𝑁𝑊𝐾

𝐸𝑁𝑊𝐾 the set of edges of 𝐺𝑁𝑊𝐾

𝐸𝑇𝑅𝐴𝑁𝑆 ← ∅
𝛿 # Threshold
for all (𝑛,𝑚 |𝑛 ∈ 𝐸𝑁𝑊𝐾 ,𝑚 ∈ 𝐸𝑁𝑊𝐾 and 𝑛 ≠𝑚) do
𝑒 (𝑛,𝑚) ← {𝑒 ∈ 𝐸𝑁𝑊𝐾 |𝑒.𝑠𝑟𝑐 = 𝑛 and 𝑒.𝑑𝑠𝑡 =𝑚}
𝑒 (𝑚,𝑛) ← {𝑒 ∈ 𝐸𝑁𝑊𝐾 |𝑒.𝑠𝑟𝑐 =𝑚 and 𝑒.𝑑𝑠𝑡 = 𝑛}
for all 𝑒1 ∈ 𝑒 (𝑛,𝑚) and 𝑒2 ∈ 𝑒 (𝑚,𝑛) do
𝑡𝑠1 ← 𝑒1 .𝑡𝑠 # timestamp of 𝑒1
𝑡𝑠2 ← 𝑒2 .𝑡𝑠 # timestamp of 𝑒2
if 𝑡𝑠1 > 𝑡𝑠2 and 𝑡𝑠1 − 𝑡𝑠2 < 𝛿 then
𝑎𝑑𝑑𝐸𝑑𝑔𝑒 (𝑒𝑛,𝑚, 𝐸𝑇𝑅𝐴𝑁𝑆)
𝑎𝑑𝑑𝑅𝑜𝑙𝑒 (𝑛, 𝑠𝑜𝑢𝑟𝑐𝑒)
𝑎𝑑𝑑𝑅𝑜𝑙𝑒 (𝑚, 𝑠𝑖𝑛𝑘)

end if
if 𝑡𝑠2 > 𝑡𝑠1 and 𝑡𝑠2 − 𝑡𝑠1 < 𝛿 then
𝑎𝑑𝑑𝐸𝑑𝑔𝑒 (𝑒𝑚,𝑛, 𝐸𝑇𝑅𝐴𝑁𝑆)
𝑎𝑑𝑑𝑅𝑜𝑙𝑒 (𝑚, 𝑠𝑜𝑢𝑟𝑐𝑒)
𝑎𝑑𝑑𝑅𝑜𝑙𝑒 (𝑛, 𝑠𝑖𝑛𝑘)

end if
end for

end for

IoTMap IoT ’20, October 06–09, 2020, Malmö, Sweden

4.3.1 Source and Sink patterns (OWT, PBC). We propose two dif-
ferent patterns to detect if a node is a source, a sink or a source-sink.
The first pattern OWT, considers one way transmissions between
two nodes and identifies the sender of the communication as source
and the recipient as sink. The second pattern PBC, illustrated by
Algorithm 1, considers periodic bidirectional communications be-
tween two nodes where one node sends a request and the other one
responds. We suppose in this pattern that no acknowledgements
are sent back after a response. We identify the device that responds
to a query as source and the one that initiates the communication as
sink. To ensure the right role of each device, we have to determine
the orientation of the exchange, it means which device initiates the
communication and which one responds. We use a threshold 𝛿 as
the time required to a device that received a request to respond.

4.3.2 Controller pattern (CTRL). This pattern, illustrated by Algo-
rithm 2, considers communications with nodes tagged both source
and sink and the nodes involved in corresponding communications.
We start from the nodes tagged source-only and we follow the com-
munication flow to the nodes tagged sink. We define the threshold
𝛿 as the time required by the node being both source and sink to
get information from the source, analyse it and send a command
to the sink. If the timestamp between the node with both roles and
the sink and the timestamp between the node and the source is
lower than the threshold, then we assume that this node acts as a
controller. This pattern is used after the assignment of the source
and sink roles for each device.

Finally, we build the transport graph according to the role of
the nodes. We draw an oriented edge from a node tagged as source
or controller to a node tagged sink or controller according to the
communications observed in the network graph.

Algorithm 2 Controller pattern (CTRL)
Input: 𝐺𝑇𝑅𝐴𝑁𝑆
Output: Part of 𝐺𝑇𝑅𝐴𝑁𝑆

𝑁𝑇𝑅𝐴𝑁𝑆 the set of nodes of 𝐺𝑇𝑅𝐴𝑁𝑆
𝐸𝑇𝑅𝐴𝑁𝑆 the set of edges of 𝐺𝑇𝑅𝐴𝑁𝑆
𝛿 # Threshold
for all (𝑛 ∈ 𝑁𝑇𝑅𝐴𝑁𝑆 |𝑛.𝑟𝑜𝑙𝑒 is source-sink) do
𝑒𝑠𝑘 ← {𝑒 |𝑒 ∈ 𝐸𝑇𝑅𝐴𝑁𝑆 , 𝑒 .𝑠𝑟𝑐 = 𝑛}
𝑒𝑠𝑟𝑐 ← {𝑒 |𝑒 ∈ 𝐸𝑇𝑅𝐴𝑁𝑆 , 𝑒 .𝑑𝑠𝑡 = 𝑛}
for all 𝑒1 ∈ 𝑒𝑠𝑘 do
𝑡𝑠1 ← 𝑒1 .𝑡𝑠
𝑠 ← {𝑠 |𝑠 ∈ 𝑁𝑇𝑅𝐴𝑁𝑆 , 𝑠 = 𝑒1 .𝑠𝑟𝑐}
for all 𝑒2 ∈ 𝑒𝑠𝑟𝑐 do
𝑡𝑠2 ← 𝑒2 .𝑡𝑠
if 𝑡𝑠2 > 𝑡𝑠1 and 𝑡𝑠2 − 𝑡𝑠1 < 𝛿 then
𝑠𝑒𝑡𝑅𝑜𝑙𝑒 (𝑛, ”𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟”)

end if
end for

end for
end for

4.4 Application pattern 𝑃𝐴𝑃𝑃

Application pattern defines a high-level application analysis. It aims
to detect specific application that may be deployed intentionally

Algorithm 3 Actuator-Sensor pattern (ASP)
Input: 𝐺𝑇𝑅𝐴𝑁𝑆
Output: 𝐺𝐴𝑃𝑃

𝑁𝑇𝑅𝐴𝑁𝑆 the set of nodes of 𝐺𝑇𝑅𝐴𝑁𝑆
𝐸𝑇𝑅𝐴𝑁𝑆 the set of edges of 𝐺𝑇𝑅𝐴𝑁𝑆
𝛿 # Threshold
𝐸𝐴𝑃𝑃 ← ∅
for all (𝑛 ∈ 𝑁𝑇𝑅𝐴𝑁𝑆 |𝑛.𝑟𝑜𝑙𝑒 is 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟) do
𝑒𝑠𝑘 ← {𝑒 |𝑒 ∈ 𝐸𝑇𝑅𝐴𝑁𝑆 , 𝑒 .𝑠𝑟𝑐 = 𝑛}
𝑒𝑠𝑟𝑐 ← {𝑒 |𝑒 ∈ 𝐸𝑇𝑅𝐴𝑁𝑆 , 𝑒 .𝑑𝑠𝑡 = 𝑛}
for all (𝑒1 ∈ 𝑒𝑠𝑘 , (𝑒2 ∈ 𝑒𝑠𝑟𝑐) do
𝑡𝑠1 ← 𝑒1 .𝑡𝑠
𝑡𝑠2 ← 𝑒2 .𝑡𝑠
if 𝑡𝑠2 > 𝑡𝑠1 and 𝑡𝑠2 − 𝑡𝑠1 < 𝛿 then
𝑠 ← {𝑠 |𝑠 ∈ 𝑁𝑇𝑅𝐴𝑁𝑆 , 𝑠 = 𝑒1 .𝑠𝑟𝑐}
𝑑 ← {𝑑 |𝑑 ∈ 𝑁𝑇𝑅𝐴𝑁𝑆 , 𝑑 = 𝑒2 .𝑑𝑠𝑡}
𝑒𝑠,𝑑 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝐸𝑑𝑔𝑒 (𝑠, 𝑑)
𝑎𝑑𝑑𝐸𝑑𝑔𝑒 (𝑒𝑠,𝑑 , 𝐸𝐴𝑃𝑃)

end if
end for

end for

or not in the network based on the transport graph 𝐺𝑇𝑅𝐴𝑁𝑆 . We
propose in this section two application patterns: an actuator-sensor
application scheme that emphasizes interactions between two nodes
and a data-aggregation scheme that identifies devices gathering
data in the network.

4.4.1 Actuator-Sensor pattern (ASP). This application scheme, rep-
resented in Algorithm 3 considers only multihop sensor-actuators
schemes. Indeed, in the case of a direct transmission between the
sensor and the actuator, we can identify the interaction in the trans-
port graph, where the sensor is the source and the actuator is the
sink. So we consider paths with at least one controller between a
source and a sink. Then to ensure that an interaction exists between
the source and the sink, we analyse the timestamp of packets sent
by the source and those sent by the controller. If the difference be-
tween them is inferior than the threshold 𝛿 then we assume that the
controller sends data or command to the sink due to the informa-
tion received from the source, so this latter interacts with the sink
through the controller. If multiple devices tagged controller exist on
the path, we apply this pattern recursively.

4.4.2 Data aggregation pattern (DAG). This pattern considers node
that receives packets from at least 𝑡 different nodes tagged source.
We define 𝑡 as the number of sources required for a node to be
detected as a data aggregator. We assume that if a node gathers
data from 𝑡 sources, then it analyses it or stores it for further use.
This pattern is represented in Algorithm 4.

5 EVALUATION
In this section, we evaluate our proposition. First, we detail the
experimentation settings. Then, we show (1) that our protocol-
agnostic approach allows to detect interactions which would have
remain unnoticeable if each protocol was studied independently

IoT ’20, October 06–09, 2020, Malmö, Sweden J. Tournier, et al.

Algorithm 4 Data aggregation pattern (DAG)
Input: 𝐺𝑇𝑅𝐴𝑁𝑆
Output: 𝐺𝐴𝑃𝑃

𝑁𝑇𝑅𝐴𝑁𝑆 the set of nodes of 𝐺𝑇𝑅𝐴𝑁𝑆
𝐸𝑇𝑅𝐴𝑁𝑆 the set of nodes of 𝐺𝑇𝑅𝐴𝑁𝑆
𝑁𝐷𝐴𝐺 ← {𝑛 |𝑛 ∈ 𝑁𝑇𝑅𝐴𝑁𝑆 , n.role is ctrl or sk or src-sk}
t # Threshold to determine if the node is a DAG
𝐸𝐴𝑃𝑃 ← ∅
for all (𝑛 ∈ 𝑁𝐷𝐴𝐺) do
𝐸𝑠𝑢𝑏𝐴𝑃𝑃 ← ∅
𝑒𝑠𝑘 ← {𝑒 |𝑒 ∈ 𝐸𝑇𝑅𝐴𝑁𝑆 , 𝑒 .𝑑𝑠𝑡 = 𝑛}
𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0
for all 𝑒 ∈ 𝑒𝑠𝑘 do
𝑠 ← {𝑠 |𝑠 ∈ 𝑁𝑇𝑅𝐴𝑁𝑆 , 𝑠 = 𝑒.𝑠𝑟𝑐}
if 𝑠 .𝑟𝑜𝑙𝑒 is 𝑠𝑜𝑢𝑟𝑐𝑒 or 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 then
𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1
𝑎𝑑𝑑𝐸𝑑𝑔𝑒 (𝑒, 𝐸𝑠𝑢𝑏𝐴𝑃)

end if
end for
if 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 𝑡 then
𝐸𝑠𝑢𝑏𝐴𝑃𝑃 ← ∅

end if
merge(𝐸𝑠𝑢𝑏𝐴𝑃𝑃 , 𝐸𝐴𝑃𝑃)

end for

and (2) that the controller detection pattern, quite central in our
approach, is precise.

5.1 Experimentation settings
To conduct our experimentation, we setup the lab corresponding to
our motivating scenario (Section 2). It features twelve IoT devices
deployed over three different protocols to ensure communications
between devices (Figure 1). For each protocol we use different hard-
ware. For the subnet using the ZigBee protocol, we use a Smart-
Things hub, a RaspberryPi with the ConBee microchip and the
RaspBee distribution, a smart plug and a temperature sensor. For
the OS4I subnet, we deploy a RaspberryPi with a CC2530 dongle
configured as a 6LoWPAN Border Router (6lbr) and five CC2650
sensortags programs with Contiki OS. For the subnet using the
BLE protocol, we deploy two MICRO:BIT devices and we configure
the two RaspberryPi devices, used in the ZigBee and 6LoWPAN
subnets, to enable BLE communications.

To capture the traffic, we equipped a computer with five dongles:
an ATMEL RZUSBStick with the KillerBee framework to intercept
ZigBee communications, a CC2530 sensortag with the sensniff
application to intercept OS4I traffic and three MICRO:BIT devices
with the btlejack firmware to intercept BLE communications.

We provide some applications which are internal to a subnet
(mono-protocolar) and some others that are cross-subnet (multi-
protocolar). We use a BLE-ZigBee application, where the Raspber-
ryPi acts as an interface between the BLE protocol and the ZigBee
protocol. For this application, we setup a MICRO:BIT device as a
temperature sensor that is requested by the Raspberry every ten sec-
onds. For each request, the Raspberry analyses the returned value,
compares it to some threshold and then sends the corresponding

command to the smart plug. Another application is designed to
allow devices in the BLE, ZigBee and OS4I subnets to interact with
each other. It uses five devices, one MICRO:BIT that initiates the
requests, one sensortag CC2650 that is the target of the requests,
the ZigBee and OS4I subnets Raspberry acting as router and the
smart plug. All these application are illustrated in Figure 1.

5.2 Results
We perform two evaluations of IoTMap. The first one focuses on the
pattern detection according to the numbers of protocols observed.
The second one measures the relevance of a specific algorithm of
IoTMap using the precision and recall functions.

5.2.1 Protocol-based comparison. We perform an analysis on pat-
terns successfully detected according to the number of protocols
simultaneously observed. We focus the evaluation on patterns used
to build the transport graph 𝐺𝑇𝑅𝐴𝑁𝑆 (OWT, PBC(1) and CTRL(2))
and the application graph 𝐺𝐴𝑃𝑃 (ASP(3)), presented in Section 4.
For patterns OWT, PBC(1) and CTRL(2), we compare the number
of nodes correctly tagged (CT) and those wrongly tagged (WT)
amongst the four different possible values source, sink, source-sink
and controller. We then evaluate the pattern ASP(3) using three
parameters:
TP: True Positives are edges created between two nodes and

existing in our ground truth
FP: False Positives are edges created between two nodes and not

existing in our ground truth
FN: False Negatives are edges not created between two nodes

and existing in our ground truth
Three protocols are deployed in our IoT platform, we hence

perform seven experimentations to cover the whole set of combi-
nation of protocols. We use the ’-’ separator to identify protocols
observed simultaneously while a ’∪’ is used to symbolize that pro-
tocols are put together but not observed simultaneously. Moreover,
each experimentation is based on the same dataset of intercepted
communications and we use the same value of each parameter used
to generate graphs. We also define a graph as ground truth (row
labelled Expected Values in Table 1) corresponding to the applica-
tions deployed in the network and illustrated by both Figure 5 for
𝐺𝑇𝑅𝐴𝑁𝑆 and Figure 6 for 𝐺𝐴𝑃𝑃 . We then compare this graph to
each one produced per experimentation. Results of these experi-
mentations are presented in Table 1.

We observe that IoTMap wrongly detects the role of two nodes
in almost each experimentation where only one or two protocols
are observed simultaneously. This result shows that nodes involved

Table 1: Patterns detection according to the number of pro-
tocols simultaneously observed.

Protocol(s)
Patterns 𝑂𝑊𝑇 /𝑃𝐵𝐶/𝐶𝑇𝑅𝐿 𝐴𝑆𝑃

CT WT TP FP FN
ZigBee ∪ BTLE ∪ OS4I 10 2 2 1 2
ZigBee-BTLE ∪ OS4I 10 2 3 3 1
ZigBee-OS4I ∪ BTLE 10 2 2 1 2
OS4I-BTLE ∪ ZigBee 12 0 2 1 2
ZigBee-OS4I-BTLE 12 0 4 2 0
Expected values 12 0 4 0 0

IoTMap IoT ’20, October 06–09, 2020, Malmö, Sweden

in several subnets using different protocols are hard to classify
when information, or a part of it, is missing. As expected, when all
protocols are simultaneously observed, IoTMap correctly identifies
the role of every nodes, even those involved in many subnets. We
observe the same result when we focus on 𝐺𝐴𝑃𝑃 pattern detection.
When protocols are observed independently or in pairs, IoTMap
identifies only protocol-specific interaction.We expect false positive
results because IoTMap requires three parameters to generate the
complete modelling. Depending on the value for each parameter,
the given results can be more or less relevant with few or many
false positives. Moreover, as IoTMap relies on a time-based analysis
to identify patterns, two communications with timestamps very
close (for instance with a difference of 0.001s) may match a pattern
even if it is not expected. We evaluate the relevance of IoTMap in a
second evaluation.

5.2.2 Precision and recall. We evaluate the relevance of the pat-
tern CTRL(2). This pattern detects if a node with the role source-
sink is considered as a controller. We use the precision and recall
methodologies to measure the relevance of the pattern detection
we consider. We set three parameters such as TP for true positive,
FP for false positive and FN for false negative, defined as follows:
TP: nodes detected as controller where the two other nodes in-

volved in the communication are correlated.
FP: nodes detected as controller where the two other nodes in-

volved in the communication are not correlated.
FN: nodes not detected as controller although the two other

nodes involved in the communication are correlated.
Based on these parameters, we provide two measures, the preci-

sion(1) and the recall(2), defined as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (1) 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2)

The ground truth is represented by a graph defined with the
knowledge of the applications deployed in the platform. This graph
is illustrated in Figure 5. Each node and each edge of this graph
correspond to the correct and expected value.

Figure 8: Rate of nodes detected as controller amongst nodes
with source-sink role.

Figure 8 demonstrates that IoTMap is very relevant when the
delta is small, even very small (< 1s), with a precision about almost
100%. We then observe a strong decrease of the precision as soon
as the delta exceeds 1s, to reach a rate lower than 30% with a delta
equal to 15s. As expected the recall curve grows very fast to reach
100% with a delta value close to 1s, then the curve stands to 100%
along with the increase of delta. This result is explained by the short
frame where false negative can be found. Indeed, false negative
element are nodes that should be defined as controller but not
detected by IoTMap. However, with a delta close to 1s all false
negative elements are replaced by true positive elements.

6 RELATEDWORK
Multiple studies focus on the capture and analysis of IoT networks.
We divide those works intro four different groups: works focusing
on the packet capture and manipulation, those focusing on mon-
itoring, those focusing on traffic analysis and those focusing on
monitoring and traffic analysis.

The first group of works presents frameworks that provide an in-
terface between radio signals and digital information. Indeed, those
frameworks are sets of tools for users to interact with the protocol
and understand it. They provision multiple complex functionalities
such as sniffing, network reconnaissance, devices discovering and
simpler programs to receive and send packets over the radio for
instance. In [20], Joshua Wright presents his ZigBee attack frame-
work named KillerBee. This set of tools can intercept, inject and
manipulate 802.15.4 and ZigBee traffic. Hall Joseph et al. introduce
their Zwave attack framework in [6]. As KillerBee, EZ-Wave is able
to intercept and manipulate traffic in ZWave networks. In our ap-
proach, those works are related to the physical and data link layers
of our IoT stack.

The second group of studies presents works focused on traffic
monitoring. We denote two different approaches to monitor net-
works: passive and active. An active approach relies on modules
installed on network nodes to capture the sent and received traffic.
An active method offers better interception capacities but uses a sig-
nificative part of resources of the nodes. Several works [12, 14, 18]
provide solutions to monitor traffic in networks. They can detect
node failures, list neighbours, identify topology and offer the ca-
pacity to visualise the state of the network. However, those tools
involve adding code to the node’s applications. This requirement is
not always possible, even more if sensors are already deployed and
can not be reprogrammed. A passive approach consists of using
sniffers to intercept radio signals and to convert them to digital
information. A passive method does not impact the node resources,
but it is more affected by interference and packets loss. In [2, 4, 8, 21],
multiple problems are tackled to improve traffic monitoring using
passive methods. They provide solutions to process traces merging
using multiple sniffers such as time normalisation and duplicate
transmissions. They also propose algorithms to analyse traffic to
reconstruct node interactions and interfere routing path. Finally,
all those works provide an interface to visualise the network as it
is captured. In our approach, we only consider traffic monitoring
based on the passive method. Furthermore, compared to our ap-
proach, those works are related to the data-link and network layers
of our IoT stack.

IoT ’20, October 06–09, 2020, Malmö, Sweden J. Tournier, et al.

The third group of studies focuses on traffic analysis. Someworks
are focus on devices identification or recognition to identify net-
work threats or abnormal traffic. Authors use device identification
by fingerprinting techniques to distinguish trusted and untrusted
devices. Miettinen et al. in [10] describe a device-type classification
relying on the analysis of the joining sequence of a new node in the
networks. This approach raises multiple issues if all devices have
already paired or if they change behaviour afterwards. In [3, 15] au-
thors propose to classify devices from its behaviour after observing
its communications. They analyse devices traffic collected during a
finite time and observe specific information to deduct a different
behaviour. Those approaches rely on the knowledge of devices and
the regular behaviour traffic to be able to detect a malicious one.
Others studies [9, 17] are focused on traffic classification to identify
specific applications in the network. Sivanathan et al. in [17] pro-
vide a methodology and solutions to instrument and classify traffic
generated by IoT devices deployed throughout campus environ-
ments. Works of [9] are an improvement of network traffic classifier
using convolutional neural networks. Like [17], Lopez et al. capture
the traffic and analyse it using multiple characteristics. Those two
studies rely on a proxy installed beforehand on the network to
intercepted all the traffic incoming and outgoing. All studies pre-
sented in this paragraph are related to the application layer of our
approach. However, all those works are specific to a unique layer of
the IoT stack. Furthermore, only few IoT protocols are supported,
and devices are mainly IP-based or use no-specific IoT protocols
such as HTTP, DNS, etc. Our approach is protocol-agnostic and we
treat all layers except the physical one.

The last group includes all-in-one solutions presented in the
previous groups. Siby et al. in [16] describe an approach covering all
steps from the capture of the traffic to the analysis of this one with
devices using IoT protocol such as BLE or ZigBee. Their framework
uses passive monitoring methods to intercept, capture and visualise
traffic. The framework is also able to analyse the trace to identify
and classify devices to determine potential threats. However, their
main experimentation relates toWIFI enabled devices. Furthermore,
their classification relies only on detecting the type of devices, and
the classification per type requires to define each type of device
before. In our approach, we classify devices according to their role
in the network, and we describe a holistic analysis of IoT systems
using different IoT protocols and interconnected, where an event
in a system can produce actions in another one.

7 CONCLUSION AND FUTUREWORK
In this work, we present IoTMap, a system capable of modelling
interconnected IoT networks using multiple protocols simultane-
ously. First, we introduce an iterative graph-based representation
to model the different layers of an IoT system, ranging from packet
transmission to application-type analysis. Then, we propose dif-
ferent patterns to fuel the construction of each graph from the
underlying one. Finally, we demonstrate that we can identify spe-
cific application behaviour amongst devices belonging to different
protocols on a physical testbed.

In its current state, IoTMap supports three different protocols
(ZigBee, BLE and 6LowPAN) and relies on unencrypted commu-
nications. In our future work, we will introduce new interaction

patterns to identify more application types, e.g. at the network
level with multicast protocols, and at the application level with
streaming or data leak behaviours. We will model encrypted IoT
networks using network analysis and flow tracking. Long-range
IoT networks are also a perspective of improvement for IoTMap.
However, even if the mesh topology exists for these IoT protocols,
it is not widely deployed, making the modelling of these networks
less of a priority. IoTMap is licensed under GPL 3.0 and available
on Github (https://github.com/AlgoSecure/iotmap).

REFERENCES
[1] P. Baronti, P. Pillai, V.W. C. Chook, S. Chessa, A. Gotta, and Y-F Hu. 2007. Wireless

sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee
standards. Computer Communications 30, 7, 1655–1695.

[2] B. Benmoshe, E. Berliner, A. Dvir, and A. Gorodischer. 2011. A joint frame-
work of passive monitoring system for complex wireless networks. In Consumer
Communications and Networking Conference (CCNC). IEEE, 55–59.

[3] B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and I. Ray. 2018. Iotsense:
Behavioral fingerprinting of iot devices. CoRR.

[4] B. Chen, G. Peterson, G. Mainland, and M. Welsh. 2008. LiveNet: Using Passive
Monitoring to Reconstruct Sensor Network Dynamics. In Distributed Computing
in Sensor Systems, 4th IEEE International Conference (DCOSS). Springer, 79–98.

[5] B. Fouladi and S. Ghanoun. 2013. Security evaluation of the Z-Wave wireless
protocol. Black hat USA 24.

[6] J. Hall, B. Ramsey, M. Rice, and T. Lacey. 2016. Z-Wave network reconnaissance
and transceiver fingerprinting using software-defined radios. In International
Conference on Cyber Warfare and Security (ICCWS). Academic Conferences Inter-
national Limited, 163.

[7] R. Hallman, J. Bryan, G. Palavicini, J. DiVita, and J. Romero-Mariona. 2017. IoD-
DoS - The Internet of Distributed Denial of Sevice Attacks - A Case Study of
the Mirai Malware and IoT-Based Botnets. In Proceedings of the 2nd International
Conference on Internet of Things, Big Data and Security (IoTBDS). SciTePress,
47–58.

[8] G. Kunzel, J-M. Winter, I. Muller, C-E. Pereira, and J-C. Netto. 2013. A passive
monitoring tool for evaluation of routing in WirelessHART networks. In 4th
International Embedded Systems Symposium (IESS). Springer, 159–170.

[9] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret. 2017. Network
traffic classifier with convolutional and recurrent neural networks for Internet
of Things. IEEE Access 5, 18042–18050.

[10] M.Miettinen, S. Marchal, I. Hafeez, N. Asokan, A-R. Sadeghi, and S. Tarkoma. 2017.
IoT SENTINEL: Automated Device-Type Identification for Security Enforcement
in IoT. In 37th International Conference on Distributed Computing Systems (ICDCS).
IEEE Computer Society, 2177–2184.

[11] M-V Moreno, J. Santa, M-A Zamora, and A-F Skarmeta. 2014. A holistic IoT-based
management platform for smart environments. In International Conference on
Communications (ICC). IEEE, 3823–3828.

[12] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin. 2005.
Sympathy for the sensor network debugger. In Proceedings of the 3rd international
conference on Embedded networked sensor systems (SenSys). ACM, 255–267.

[13] A. Reziouk, A. Lebrun, and J-C. Demay. 2016. Auditing 6LoWPAN Networks
UsingStandard Penetration Testing Tools. DEF CON.

[14] S. Rost and H. Balakrishnan. 2006. Memento: A health monitoring system for
wireless sensor networks. In 3rd Annual Communications Society on Sensor and
Ad Hoc Communications and Networks (SECON), Vol. 2. IEEE, 575–584.

[15] M. Shahid, G. Blanc, Z. Zhang, and H. Debar. 2018. IoT Devices Recognition
Through Network Traffic Analysis. In International Conference on Big Data (Big
Data). IEEE, 5187–5192.

[16] S. Siby, R. Ranjan Maiti, and N. Ole Tippenhauer. 2017. IoTScanner: Detecting
Privacy Threats in IoT Neighborhoods. In Proceedings of the 3rd ACM International
Workshop on IoT Privacy, Trust, and Security (IoTPTS@AsiaCCS). ACM, 23–30.

[17] A. Sivanathan, D. Sherratt, H-H. Gharakheili, A. Radford, C. Wijenayake, A.
Vishwanath, and V. Sivaraman. 2017. Characterizing and classifying IoT traffic in
smart cities and campuses. In Conference on Computer CommunicationsWorkshops
(INFOCOM WKSHPS). IEEE, 559–564.

[18] M. Turon. 2005. Mote-view: A sensor network monitoring and management tool.
In 2nd IEEE Workshop on Embedded Networked Sensors (EmNetS-II). IEEE, 11–17.

[19] L. N. Whitehurst, T. R. Andel, and J. Todd McDonald. 2014. Exploring security in
ZigBee networks. In Cyber and Information Security Research Conference (CISR).
25–28.

[20] J. Wright. 2009. Killerbee: practical zigbee exploitation framework. In 11th
ToorCon conference.

[21] X. Xu, J. Wan, W. Zhang, C. Tong, and C. Wu. 2011. PMSW: a passive monitoring
system in wireless sensor networks. Int. Journal of Network Management 21, 4,
300–325.

https://github.com/AlgoSecure/iotmap

	Abstract
	1 Introduction
	2 Motivating Scenario
	3 Graph-based modelling
	3.1 Data-link graph
	3.2 Network graph
	3.3 Transport graph
	3.4 Application graph

	4 Patterns detection
	4.1 Data-Link pattern PDL
	4.2 Network pattern PNWK
	4.3 Transport pattern PTRANS
	4.4 Application pattern PAPP

	5 Evaluation
	5.1 Experimentation settings
	5.2 Results

	6 Related Work
	7 Conclusion and future work
	References

