
Information Flow Control on a Multi-Paradigm
Web Application for SQL Injection Prevention

Meriam Ben-Ghorbel-Talbi, François Lesueur, and Gaetan Perrin

Université de Lyon, CNRS
INSA-Lyon, LIRIS, UMR5205, F-69621, France

{meriam.talbi, francois.lesueur, gaetan.perrin}@insa-lyon.fr

Abstract. In this paper, we propose an integrated framework to control
information flows in order to prevent security attacks, namely, SQL
injections threatening data confidentiality. This framework is based on
the Prerequisite TBAC model, a new Tuple-Based Access Control model
designed to control data dissemination in databases, and that guarantees
a controlled declassification. To track information flow in the application
part, we propose to propagate dynamically security labels through the
system using Paragon, a typed-security language that extends Java with
information flow policy specification.

Keywords: Information Flow, TBAC, Declassification

1 Introduction

When trying to control information flows in a program, most propositions focus
on only one part: either security-typed languages for imperative programs or
Multi-Level Security databases for the declarative parts. Although programs
are in fact constructed using both imperative and declarative programming, few
previous work study both at the same time. In this paper, our contribution is
two-fold: we propose an integrated framework to follow information flows from
the moment they enter the system until they leave it, possibly being stored
and manipulated in the database in the meantime. Moreover, this framework
is based on Dissemination Control to circumvent the threats of uncontrolled
declassification. We argue that the combination of these contributions allows to
greatly reduce the burden of the application developer: the end-to-end aspect
allows to dynamically tag data entering the system (proxy service) rather than
variables in the code and then to control output only when it leaves the system,
the application part can be mostly unchanged. The dynamic aspect allows the
developer not to specify security labels on its variables, inside his code, but
in the database at the tuple level. Dissemination control prevents erroneous
declassifications, since data entering the system are tagged with their allowed
ways of being declassified and the developer can declassify according to these
tags without worrying of a confidentiality breach. Hence, our framework can be
used to prevent information leakage, such as SQL injections.



In this paper, we propose to use TBAC [1], a new Tuple-Based Access Control
model designed to control the information flow in databases. The objective
of TBAC is to provide a mechanism that controls the dissemination of tuples
according to the authorizations defined by their producers. It is designed in
the same spirit as the decentralized information models [2] in the sense that
users are allowed to specify their own security policy on their data. To deal
with declassification we propose to extend the TBAC model family by a new
instance, which we call Prerequisite TBAC, that provides means to define which
conditions have to be satisfied to declassify data and by which subjects. In order
to control the dissemination throughout the system, namely in the application
part, we propose to use Paragon [3], a typed-security language that extends Java
by adding the ability to label data information flow policies. Paragon is well
adapted to our requirements and provides expressive information-flow policies to
deal with the declassification issue. Moreover, it supports runtime policies which
is an important feature to implement the dynamic aspect of our approach.

2 Related work

Several works in the literature have proposed information flow control solutions
based on the multilevel security policy model (MLS). Work in databases have
proposed MLS DBMS to enforce information flow control [4–6]. In these models
objects are passive entities such as relations, tuples, or rows. Subjects are active
entities such as users or programs. Many MLS database systems have been also
proposed, such as Oracle Label Security (OLS) [7], PostgreSQL [8], Sybase Secure
SQL Server [9]. Work in programming languages, such as FlowCaml [10], have
addressed information-flow control by proposing security-typed languages. They
use tainting mechanisms by labeling variables as tainted or untainted in order to
control programs inputs and outputs. The basic concept of these languages is to
statically analyze the source code of a program at compile time in order to check
that all the performed operations respect the security policy.

Recently, more research has focused on the Decentralized Label Model (DLM)
to deal with decentralized systems requirements. An application of the DLM
model to programming languages was proposed in [11] called Jif, for Java In-
formation Flow. Jif extends Java by adding labels that express restrictions on
how information may be used. Paragon [3] is another security-typed extension to
Java, which builds on the recent policy language Paralocks proposed in [12]. The
main strength of Paragon over Jif is that it is more general in the sense that the
DLM policy lattice is a sub-lattice of Paralocks.

However, few work have addressed the end-to-end information flow control
issue : to our best knowledge, the IFDB model [13] is the only one that proposes
to track flows and enforce security policy both in the DBMS and the application
platform. It introduces the query by label concept: each query has an associated
label, which is the label of the process issuing the query. This label is used as a
filter. Authority is bound to principals, such as users and roles, and each process
runs with the authority of a particular principal. Authority can be delegated



and given to users, application procedures, and also to stored procedures and
views in order to allow declassification. Other work have been proposed in this
same optics, and have pointed out the need to deal with a uniform information
flow control between databases and applications. As mentioned in [14], most
common web attacks are attacks across component boundaries (e.g. injection
attacks, cross-site scripting attacks). In [15] authors have designed DBTaint
system. It extends the database to associate each piece of data with a taint tag
and propagates these tags during database operations. In [16], information-flow
policies are specified in the database query interfaces and enforced in the web
scripting language by a static type checker. In [17], authors present LabelFlow,
an extension of PHP that tracks the propagation of information dynamically
throughout the application, transparently both in the PHP runtime and through
the database. IFDB is the most close to our approach as it is based on the DLM
model. But, contrary to the IFDB model which tracks flows on a per-process
granularity in the application-side, we aim to deal with a fine-grained flow control
both in the DBMS and the application platform as in [15–17]. Moreover, we aim
to deal with the declassification in the security policy in order to specify how
data can be declassified, which is not the case in these previous work.

3 System Architecture

As shown is figure 1, the security policy is sticked to data as labels (called s-tags),
all throughout the framework, so that data are filtered when they leave the entire
system and not only the database. Moreover, we specify the declassification policy
in the label itself, thus data can be declassified according to their labels, which
guarantees a controlled declassification.

Data Request

Prerequisite TBAC ModelDBMS

Request 

Annotated 
Result

User

A security-typed 
language (Paragon)

Filtred Result Applcation

Data Insertion

Fig. 1. System Architecture

3.1 The Security Model

We propose to deal with the security policy using a new instance of the TBAC
model [1], which we call the Prerequisite TBAC. This new instance provides
facilities to control the dissemination of data based on the policy attached to
them and also allows to express some form of authorized declassification. In this
model, we consider that a user is allowed to access a data if and only if the



prerequisites expressed by the data owners have been previously satisfied. These
prerequisites are linked to data and express which treatments these data must
go through and by which subjects. Formally, we consider that Pre is the set of
expressible prerequisites, U is the set of users, and each tuple t is annotated by
an s-tag tauth. An s-tag is a disjunction of atomic tags, each atomic tag being
defined as ((p, Uv), Ur), meaning that someone in Ur can read if someone in Uv

validate all the prerequisites in p, where p ⊆ P re, Uv ⊆ U , Ur ⊆ U . An empty
prerequisite means that users in Ur can access this tuple without any prerequisite.

3.2 The Application-side
To track information flow in the application-side, we use Paragon which builds
on two basic components: actors and parameterized locks. Actors can be princi-
pals or specific communication channels. Locks are a boolean variables used to
communicate the security relevant state of the program to the policy. A policy
is composed of a set of clauses and each clause must have a head specifying to
which actors the information may flow, and may have a body that specifies in
which conditions data may flow to these actors. Note that, Paragon policies are
similar to our policy definition: the prerequisite conditions and Locks have the
same semantic and are both used to specify how to declassify data.

Runtime policy. After receiving data from the database, we instantiate the
policies of the variables in the application code using s-tags that are attached
to the query result. Hence, s-tags will be propagated from the database to the
application and they will be sticked to data until they leave the entire system.

Downgrading. In our model, prerequisite conditions are specified using locks in the
application-side. According to the system state, or after some data transformation
that validates the prerequisite conditions, locks will be opened and hence data
will be declassified. As we said previously, prerequisite conditions have to be
removed from s-tags as soon as they are validated. Thus, we have to define a
downgrade function in order to re-annotate policies by deleting opened locks.
We call this function explicit declassification.

Filtering. In Paragon, Input-Output channels are actors so that they can be
labeled with a security policy. Thus, to automatically control data that flow
to the user, we just need to tag Output channels with a policy containing the
current user’s credentials as authorized actor. Hence, only data that satisfy the
security policy will flow from the application to the user.

3.3 The Database side

The TBAC model has been defined in [1] where different instances have
been proposed. The TBAC models family evolves around the propagation and
combination of access rights on tuples to provide information flow control in a
relational ecosystem. In this paper, we propose a new instance, called Prerequisite
TBAC, to deal with the declassification policy.



Propagation TBAC uses the provenance framework described in [18] to propagate
and combine s-tags. In databases, SPJRU queries are used for computations and
are the place for access rights propagation and combination. Select and Rename
are transparent as they do not alter the set of s-tags. Project and Union can
merge several original tuples into the same one. Each tuple t in the result can be
equivalently derived from a set T of tuples (two in the case of ∪) which have to
be combined additively, thus, access to t should be granted if access is granted
to at least one tuple from T . Join combines two original tuples into a composite
one: access to a joined tuple needs access rights to all the original ones.

We can restate the SPJRU semantics from an access control point of view
informally by one may access to a piece of information if he is authorized to access
to the original tuples which contribute to it. More formally, if we consider two
tuples a and b, where aauth = {taga1 ∨ . . .∨ tagan} and bauth = {tagb1 ∨ . . .∨ tagbm},
annotations are combined with relational queries as follows :

– If t = a 1 b, access to t requires access to both a and b. Then, t’s annotation
is defined as a disjunction of a conjunction of atomic tags as follows:
tauth = {(taga1 ∧ tagb1) ∨ . . . (taga1 ∧ tagbm) ∨ . . . (tagan ∧ tagbm)}. For each
conjunction of atomic tags we have: ((pai , Uvai), Urai) ∧((pbj , Uvbj ), Urbj ) =
{((p, Uv), Ur)|p = pai ∪ pbj , Uv = Uvai ∩ Uvbj , Ur = Urai ∩ Urbj}.

– If t = a ∪ b, access to t requires access to any of a and b and t’s annotation
is defined by tauth = {taga1 ∨ . . . ∨ tagan ∨ tagb1 ∨ . . . ∨ tagbm}. Simplification
must be applied for tags having the same prerequisite sets as follows:
{((p, Uv), Ur)|Uv = Uvai ∪ Uvbj , Ur = Urai ∪ Urbj}.

Implicit Declassification is used when the query validates automatically the
prerequisite condition. For instance, if a prerequisite requires the data to be
aggregated and if the query is an aggregation then the declassification can be
automatically triggered. If the current user is allowed to validate this prerequisite,
then it is replaced by an empty one, allowing users in the second part of the
rule to access this tuple. We consider that, a user u is authorized to validate the
prerequisite when either:

– u is expressed in the first part of the rule as a prerequisite user or,
– the prerequisite user specified in the first part of the rule is equal to all (i.e.

every user is authorized to validate the prerequisite).

Pre-Filtering is used in order to optimize the query result by sending only data
that can be accessed or declassified by the current user in the application-side.
The pre-filtering function f is applied on every tuple composing the result to a
query. For a user u requesting a tuple t, f returns true if and only if:

– u is authorized to validate the prerequisite conditions, which means that
explicit declassification is required in the application-side in order to access
data,

– u is expressed in the second part of the rule as an authorized user with no
invalidated prerequisites left.



4 Implementation

We present here a first implementation attempt of our approach. As shown in
figure 2, we have three components: the database, implemented using HSQLDB
(HyperSQL DataBase), that stores data and s-tags at the tuple-level; the applica-
tion, implemented in Java, that interacts with the database to request and insert
data; and the proxy, implemented in Paragon, that controls I/O channels, by
adding s-tags before inserting data in the database, and by filtering data before
they leave the application.

CREATE Table

USE TAG

Paragon
Data

HSQLDB

Java

Query

CREATE Table
ADD TAG

QUERY TAG

UNION/JOIN TAG

Filter TAG

Query Result
Apply Policy

SELECT
User TAG

Input

Output
row 3

row 2

row 1

Filter

INSERT INTO

INSERT INTO 
TAG 

Add Policy

Fig. 2. The implementation architecture

Modifications in the Database. HSQLDB is a relational database software written
in Java. We have extended it to deal with s-tags. For this purpose, we have
implemented a custom SQL parser that modifies all SQL queries at runtime:

– When tables are created, we intercept the query to add the USETAG com-
mand that adds automatically a new column called STAG. This column is
used to store the security policy at the tuple level.

– When data are requested, we first add the UserTAG command to the SQL
query to specify the current user credentials. Then, we intercept the query
result and we run our algorithm that combines s-tags according to the SQL
query. After the s-tags calculation, we run our pre-filtering function that
decides which tuples can be sent to the application-side, according to the
current user credentials.

The Application. We have developed a basic application in Java that plays the
role of an interface between the user and the database in order to insert and
request data. This application is a ToDo list, where users can signin, create, show
one or all their tasks. A given task can be assigned to one or many users, and
users can specify their security preferences in order to share their tasks or to
allow other users to see some details about them (e.g. the title, or the number of
their tasks).



The Proxy. Paragon is used to develop the proxy that controls input/output
channels. Using .pi files that tie paragon files (.para) with java program, it is
possible to specify the policy annotations only in the application part where
data flows from the application to the database and inversely. To control input
channels, entering data are intercepted before inserting them to the database.
Hence, the INSERT command is modified in order to add s-tags that are derived
according to the security policy specified in the application-side. We currently
use a default policy: users are only allowed to access to tasks that are assigned to
them. To control output channels, the proxy has to dynamically instantiate the
policy of the variables constituting the query result by their s-tags. Thus, for each
tuple in the query result, we convert its corresponding s-tag to a paragon policy
and we assign it to data. In addition, a new policy is created using the current
user credentials and assigned to the output channel. Data are, hence, filtered
accordingly. This is possible using the Paragon runtime library that allows to
support dynamic features.

Testing SQLI Attacks. SQL Injection Attacks are used by attackers in order
to violate data confidentiality and integrity. They use different techniques to
modify or inject an SQL query in the application input that is sent and executed
in the database. To validate our approach, we have tested some SQLI attacks
and the query result was successfully blocked by our proxy. As we said earlier,
in our model, we only deal with attacks threatening data confidentiality. For
instance, in our application, a user, say Bob, can use an SQLI attack in order
to show all tasks that are stored in table Tasks. Even, if the SQLI succeeds in
the database-side and the whole table is returned, the output result shown to
Bob is filtered and only tuples having Bob as authorized user are kept, namely
only tasks assigned to Bob. Obviously Bob will see all fields composing the tuple,
even if he is actually not supposed to see them. It is our design choice to use a
tuple granularity instead of labeling fields, but, this can be an interesting issue
to be investigated as future work.

5 Conclusion

Our framework provides end-to-end security guarantees on declassification, by
specifying in the labels themselves how data can be declassified and by which
users. This is an important feature that allows to greatly reduce the burden
of the application developer and thus to prevent security attacks. As we said
in this paper, few existing works have addressed the end-to-end information
flow control, and they do not deal with controlled declassification as it is the
case in our work. We have focused on attacks threatening data confidentiality
and we have proposed a proof of concept implementation to demonstrate that
our approach is feasible. Note that, our aim was to let the application part as
unchanged as possible, in order to facilitate the integration of our approach in
existing programs. For this purpose, we have proposed: a custom SQL parser
that modifies SQL queries at runtime to add and combine s-tags, resp. when



data are inserted and requested from the database; and a proxy service that is in
charge to label data entering the system, to dynamically propagate the s-tags
from the database to the application, and then to control output when data leave
the system. Currently we are working on extending our prototype to deal with
all the features of our model, namely the implicit and explicit declassification, in
the database and the proxy-side, respectively. As future work, we aim to design
a complete prototype and to evaluate its performance.

Acknowledgments. This work has been partially funded by the French ANR
KISS project under grant No. ANR-11-INSE-0005.

References

1. Thion, R., Lesueur, F., Talbi, M.: Tuple-Based Access Control: a Provenance-Based
Information Flow Control for Relational Data. In: SEC@SAC. (2015)

2. C., M.A., Liskov, B.: A Decentralized Model for Information Flow Control. In:
SOSP. (1997)

3. Broberg, N., van Delft, B., Sands, D.: Paragon for Practical Flow-Oriented Pro-
gramming. In: APLAS. (2013)

4. Lunt, T.F., Denning, D.E., Schell, R.R., Heckman, M., Shockley, W.R.: The
SeaView Security Model. IEEE Transactions On Software Engineering 16(6) (1990)

5. Sandhu, R., Chen, F.: The Multilevel Relational Data Model. ACM Transactions
on Information and System Security (1998)

6. Smith, K., Winslett, M.: Entity modeling in the MLS relational model. In: VLDB.
(1992)

7. Jeloka, S.: Oracle Label Security Administrator’ s Guide, 11g Release 2 (11.2).
Technical report, ORACLE (2013)

8. PostgreSQL Global Development Group: PostgreSQL 9.1 Documentation (2011)
9. Sybase Inc. Building Applications for Secure SQL Server: Sybase Secure SQL Server

Release 10.0. Technical report (1993)
10. Simonet, V.: FlowCaml in a nutshell. In: Proceedings of the first APPSEM-II

Workshop. (2003)
11. MYERS, A.C.: JFlow: Practical mostly-static information flow control. In: POPL.

(1999)
12. Broberg, N., Sands, D.: Paralocks – Role-Based Information Flow Control and

Beyond. In: POPL. (2010)
13. Schultz, D., Liskov, B.: IFDB: Decentralized Information Flow Control for Databases.

In: CCS. (2013)
14. Schoepe, D., Hedin, D., Sabelfeld, A.: SeLINQ: Tracking Information across

Application-Database Boundaries. In: ICFP. (2014)
15. Davis, B., Chen, H.: DBTaint: Cross-application Information Flow Tracking via

Databases. In: WebApps. (2010)
16. Peng, L., Zdancewic, S.: Practical Information Flow Control in Web-based Infor-

mation Systems. In: CSFW. (2005)
17. Chinis, G., Pratikakis, P., Athanasopoulos, E., Ioannidis, S.: Practical Information

Flow for Legacy Web Applications. In: ICOOOLPS, ACM (2013)
18. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance Semirings. In: Proceeding

of the 26th symposium on Principles Of Database Systems (PODS). (2007)


