
Information Flow Control on a Multi-Paradigm Web
Application for SQL Injection Prevention

Meriam Ben Ghorbel-Talbi, François Lesueur, Gaetan Perrin

Laboratoire d’InfoRmatique en Image et Systèmes d’information
LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université Lumière Lyon 2/École Centrale de Lyon

http://liris.cnrs.fr
ANR KISS project (ANR-11-INSE-0005)

http://liris.cnrs.fr

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

SQL Injection Attacks

DBMS

SQL Request

Result

User

SQLIA

Application

Integrity

Confidentiality

Example
uname = request.POST[’username’]
passwd = request.POST[’password’]
sql = “SELECT id FROM users WHERE username=’” + uname

+ “’ AND password=’” + passwd + “’”
database.execute(sql)

2/23

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

SQLI Mitigations Status
A well-known vulnerability

First public discussions in 1998
Known mitigation techniques (special chars escaping, prepared
statements)

But...
Mitigations must be integrated during the development
Requires competency and rigor during the whole development

⇒ Partial deployment of mitigations
Widely deployed web applications are usually ok
Internal or ad hoc applications are often vulnerable (depends on
a single unprotected SQL query)

845 CVE the last 3 years, conforting internal empirical analysis

3/23

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

Generic approaches

Black/White list
Apache mod_security
Oracle Database Firewall

Learning phase or signatures, false positives/negatives

Our proposition
Do not try to detect/mitigate injection points
SQL injection = information leakage (or tampering, but not
considered here)
Leverage Information Flow Control to block SQL injections

4/23

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

Existing Information Flow Control

DBMSApplication

Request

Result

User

Imperative part

Application-wide tracking
using security-typed
languages with integrated
information-flow control
(tainted-untainted labels)

Declarative part

Database-wide flow
tracking using multilevel
secure (MLS) DBMSs,
that enforce MAC
policies in databases

5/23

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

Cross component attacks

DBMSApplication

Result

User

Attacks cross component boundaries

Request

IFC in the Imperative
part

IFC in the Declarative
part

Different Paradigms

6/23

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

End-to-end IFC

DBMSApplication
User

Tracking information across application-database boundaries

Result

Request

7/23

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

Our Proposition

An integrated framework. . .
Track information flows from the moment they enter the system
until they leave it
Dissemination Control to circumvent the threats of uncontrolled
declassification

. . . allows to greatly reduce the burden of the developer
Dynamic: to tag data entering the system rather than variables
in the code (proxy service)
End-to-end: to control output only when it leaves the system
Dissemination control: data entering the system are tagged with
their allowed ways of being declassified

8/23

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

System Architecture

Data Request

Prerequisite TBAC ModelDBMS

Request

Annotated
ResultUser

A security-typed
language (Paragon)

Filtred Result Applcation

Data Insertion

9/23

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

Security Model

10/23

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

Security Model

The TBAC model
what? tuple-based fine-grained access control models
how? sticky policy paradigm
when? policies are combined and evaluated at query

evaluation time
why? dissemination control, access is authorized in

accordance with initial data producers

"One may access to a piece of information if he is authorized to
access to the original tuples which contribute to it"

Decentralized IFC
Systems with mutual distrust and decentralized authority
JIF: an application of the DIFC to programming languages

11/23

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

The security Model

The Prerequisite TBAC
A new instance to deal with declassification
A user is allowed to access a data if and only if the prerequisites
expressed by the data owners have been previously satisfied
Each tuple t is annotated by an s-tag
• An s-tag is a disjunction of atomic tags
• tauth= ((p, Uv), Ur), p a set of prerequisites, Uv a set of

validators, Ur a set of readers
• An empty prerequisite means that readers can access this tuple

without any conditions

12/23

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

Application-side

13/23

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

Application-side

Paragon
A security-typed extension to Java that is more general than JIF
Builds on two basic components
• Actors: principals or specific communication channels
• Parameterized locks: boolean variables used to communicate the

security relevant state of the program to the policy
Paragon policy is similar to our policy definition: the
prerequisite conditions and Locks are both used to specify how
to declassify data

14/23

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

Application-side

open locks

Annotated Result

Filtered Result

User

Application

Request Data
(User Credentials)

Labeling Data at runtime

Annotated
Output

Downgrade

Runtime policy: used to instantiate variables policies using
s-tags that are attached to the query result
Downgrading: according to the system state locks are opened
to declassify data policies
Filtering: output channels are labeled with a security policy,
only data that satisfy the security policy will flow from the
application to the user

15/23

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

Database-side

16/23

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

The Database-side

Policy Combination
Combination of two tuples a and b
• aauth = {taga1 ∨ . . . ∨ tagan}• bauth = {tagb1 ∨ . . . ∨ tagbm}

If t = a on b, access to t requires access to both a and b
• tauth = {(taga1 ∧ tagb1)∨ . . . (taga1 ∧ tagbm)∨ . . . (tagan ∧ tagbm)}
• ((pai , Uvai), Urai) ∧((pbj , Uvbj), Urbj) =
{((p, Uv), Ur)|p = pai ∪ pbj , Uv = Uvai ∩ Uvbj , Ur = Urai ∩ Urbj}

If t = a ∪ b, access to t requires access to any of a and b
• tauth = {taga1 ∨ . . . ∨ tagan ∨ tagb1 ∨ . . . ∨ tagbm}• Simplification must be applied for tags having the same

prerequisite sets
{((p, Uv), Ur)|Uv = Uvai ∪ Uvbj , Ur = Urai ∪ Urbj}

17/23

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

The Database-side

Prereq TBAC Model

DBMS

Labels combination

Pre-Filetring

stag= ({Prereq Conditions, Prereq Users}, {Authorized Users})

Implicit declassification

SQL Query
+ Authenticated_As

Annotated
Result Prereq

18/23

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

Proof-of-Concept

19/23

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

Database side

HSQLDB
A custom SQL parser that modifies all SQL queries at runtime

Table creation
• The USETAG command is added to the SQL query to

automatically insert a new column called STAG
• This column is used to store the security policy at the tuple level

Data request
• The UserTAG command is added to the SQL query to specify

the current user credentials
• The query result is intercepted to run our algorithm that

combines s-tags according to the SQL query
• The pre-filtering function decides which tuples can be sent to the

application-side, according to the current user credentials

20/23

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

Architecture

CREATE Table

USE TAG

Paragon
Data

HSQLDB

Java

Query

CREATE Table
ADD TAG

QUERY TAG

UNION/JOIN TAG

Filter TAG

Query Result
Apply Policy

SELECT
User TAG

Input

Output
row 3

row 2

row 1

Filter

INSERT INTO

INSERT INTO
TAG

Add Policy

Testing SQLIA
If the SQLI succeeds in the database-side and the whole table is
returned, the output result shown to the user is filtered according to
his credentials

21/23

Introduction Security Model Application-side Database-side Proof-of-Concept Conclusion

Conclusion

We focused on attacks threatening data confidentiality
We proposed a proof of concept implementation to demonstrate
that our approach is feasible
Our aim was to let the application part as unchanged as
possible
• A custom SQL parser that modifies SQL queries at runtime to

add and combine s-tags
• A proxy service to label data entering the system and to

dynamically propagate the s-tags from the database to the
application
• A filtering service to check outgoing data

Future work
• Prototype on a vulnerable third-party application
• Evaluation of the performance

22/23

Information Flow Control on a Multi-Paradigm Web
Application for SQL Injection Prevention

Meriam Ben Ghorbel-Talbi, François Lesueur, Gaetan Perrin

Laboratoire d’InfoRmatique en Image et Systèmes d’information
LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université Lumière Lyon 2/École Centrale de Lyon

http://liris.cnrs.fr
ANR KISS project (ANR-11-INSE-0005)

http://liris.cnrs.fr

	Security Model
	Application-side
	Database-side
	Proof-of-Concept

